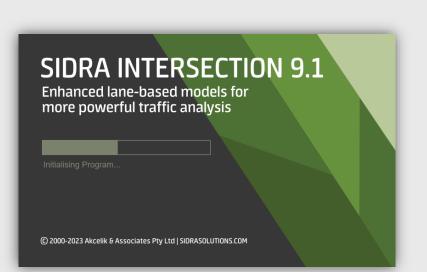
AITPM - SIDRA SOLUTIONS Webinar 17 February 2023

Network Analysis under Variable Demand Conditions - The SIDRA Method Prepared by Rahmi Akçelik Presenters:

Rahmi Akçelik, Mark Besley, Ian Espada

SIDRASOLUTIONS.COM | © Akcelik and Associates PTY LTD | ABN 79 088 889 687



Network Analysis under Variable Demand Conditions

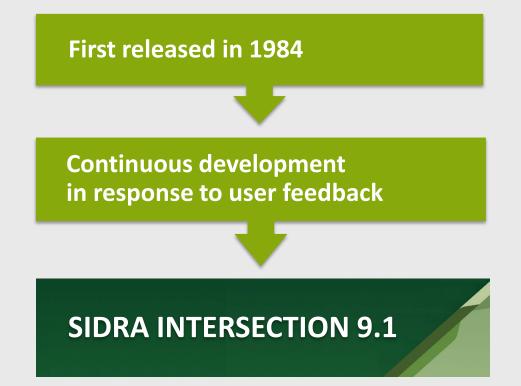
CONTENTS

2 of 53

- SIDRA INTERSECTION Current Status
- SIDRA Network Model
- Variable Demand Model for Congestion Modelling - The SIDRA Method
- Variable Demand Model Example for a Basic Network
- Alexandra Parade Congested Corridor
 REFERENCES included.

The SIDRA method for Variable Demand Analysis for intersections and networks is a new feature included in SIDRA INTERSECTION Version 9.1 released in November 2022.

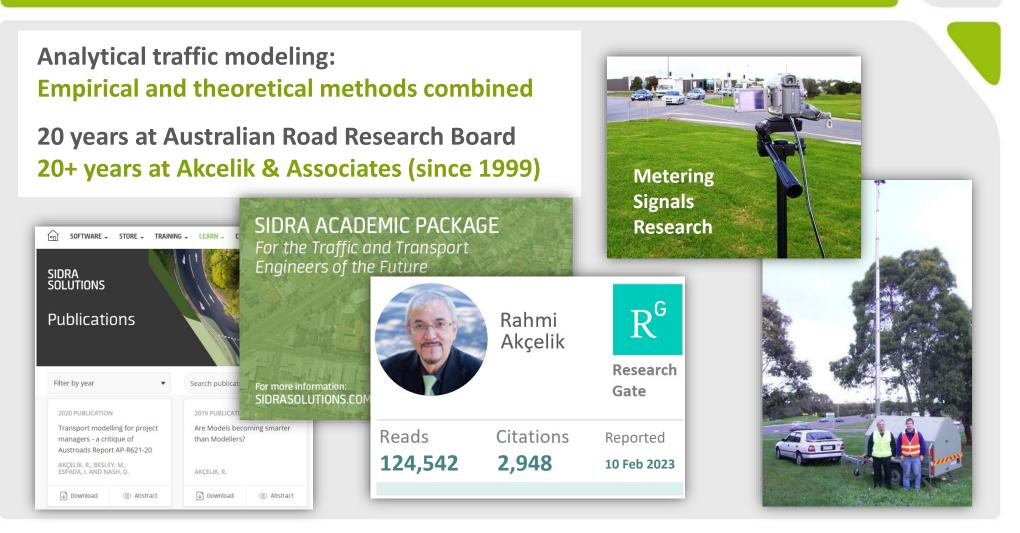
Current Software Status


SIDRA INTERSECTION Current Status

3 of 53 SIDRASOLUTIONS.COM | © Akcelik and Associates PTY LTD | ABN 79 088 889 687

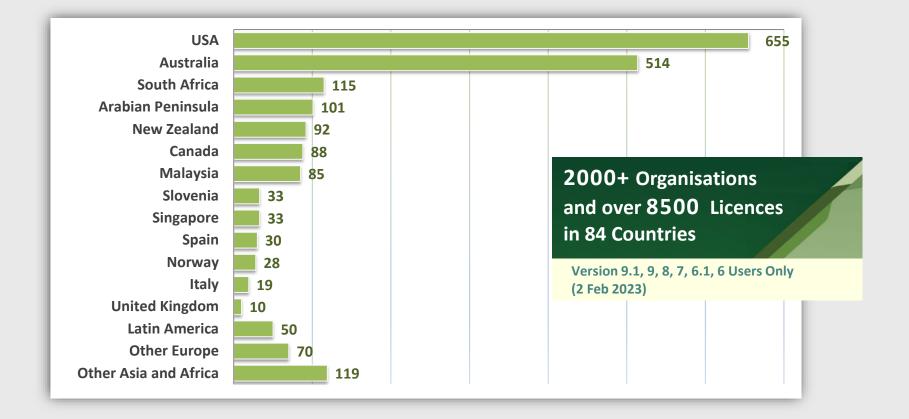
About SIDRA Signalised (and unsignalised) Intersection Design and Research Aid

Micro-analytical software for modelling Intersections and Networks.


Current Version: 9.1 (24th major SIDRA version since its first release)

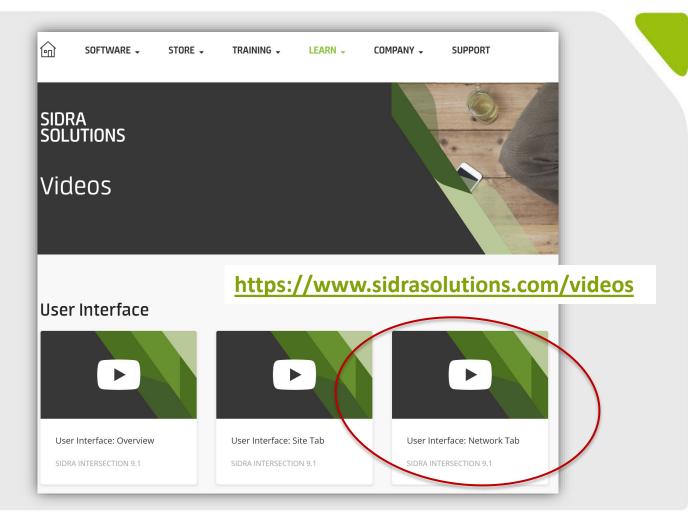
Current development:

- SIDRA INTERSECTION Version 10
- SIDRA TRIP Version 2



STRONG RESEARCH BASE of SIDRA

SIDRA INTERSECTION Users



New Tutorial Video

New tutorial video updated for SIDRA INTERSECTION 9.1:

User interface: Network Tab

New SIDRA Training Workshops (In-Person) 2023

We have designed new programs for in-person (classroom) training.

SIDRA Advanced Workshop

New in-person (classroom) workshop for users of SIDRA INTERSECTION software.

SIDRA for Project Managers & Reviewers

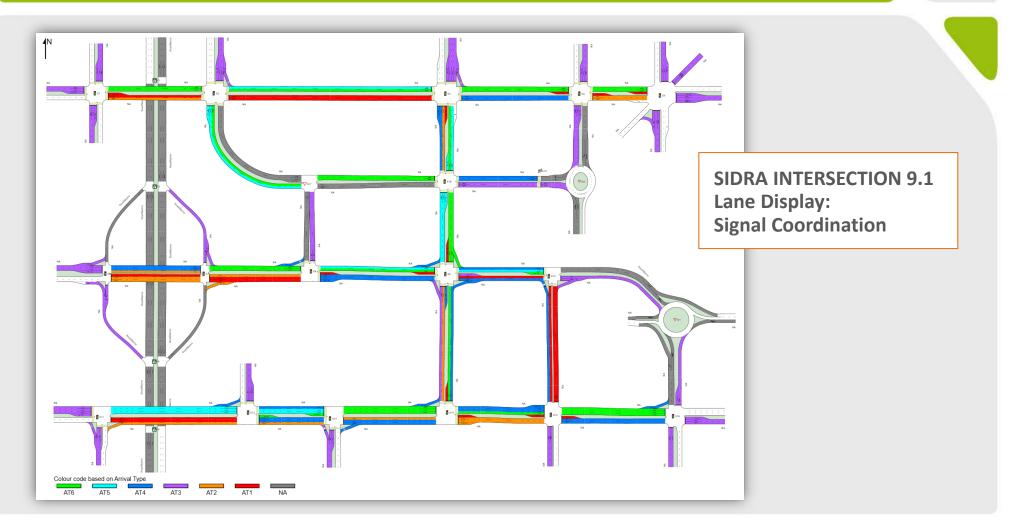
For professionals who review SIDRA analyses rather than actually undertaking the analyses, as well as project managers who have little experience in modelling but make design and operation decisions based on review of SIDRA analyses.

Dates

- SYDNEY | 28-31 March 2023
- Brisbane | 11-14 July 2023
- Perth | 8-11 August 2023
- Melbourne | 22-25 August 2023

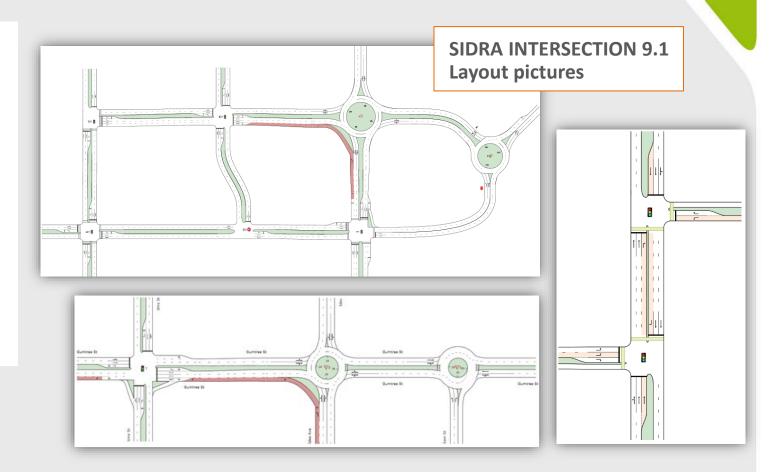
SIDRA NETWORK MODEL

SIDRA Network Model


Lane-based micro-analytical model

For small to medium size networks (up to 50 Sites)

26-Site Network Example

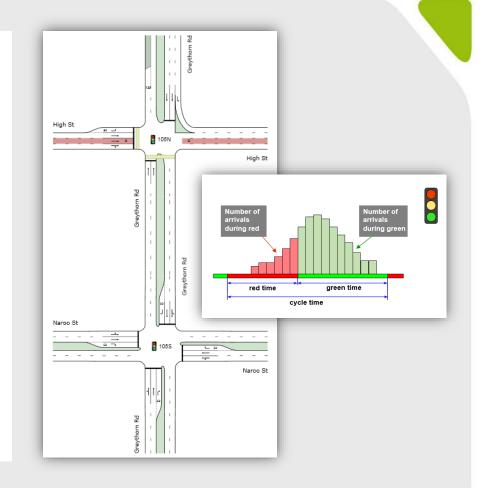


SIDRA NETWORK Model Features

All intersection and crossing types, interchanges (signals, roundabouts, sign control)

Paired Intersections

Alternative Intersections and Interchanges



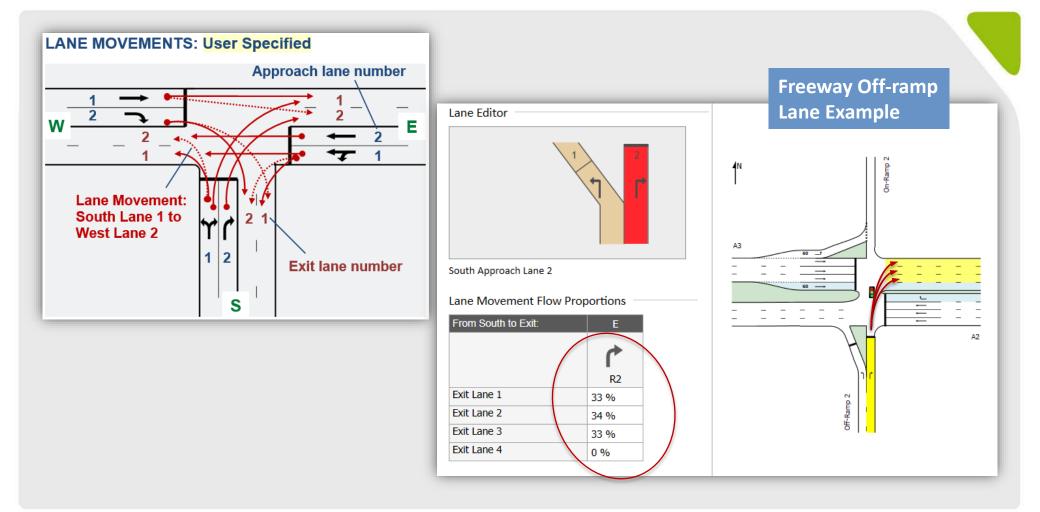
SIDRA NETWORK Model Features

- LANE-BASED analytical Network model
- QUEUE SPILLBACK and Capacity Constraint
- Movement Classes

 (special use for downstream turning movements)
- Second-by-second lane-based platoon model
- Lane Movements at intersections
- Implied midblock lane changes
- Network signal timing (cycle time, green splits and offsets for signal coordination)
- Common Control Group for signal phasing and timing with one signal controller unit

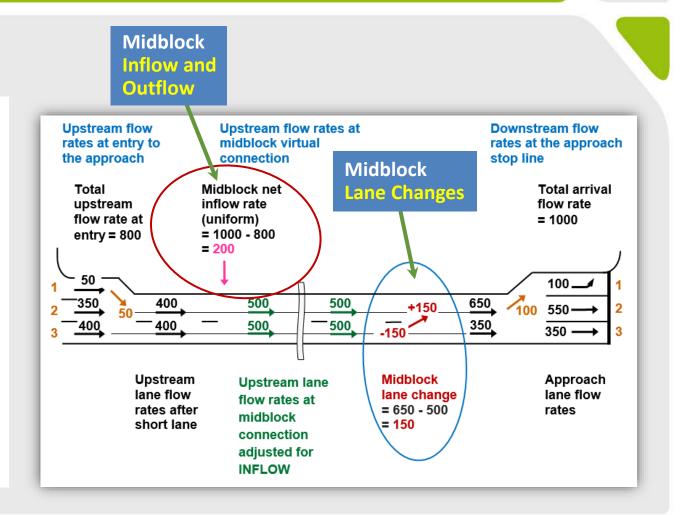
Lane Blockage and Capacity Constraint

Backward spread of congestion (reduced upstream capacity)


Capacity constraint (reduced downstream arrival flows)

- The two basic elements of the model are highly interactive with opposing effects.
- Requires an iterative process to find a solution that balances these opposing effects (some uncertainty for congested networks).
- Backward spread of congestion and capacity constraint are common to all intersection types.

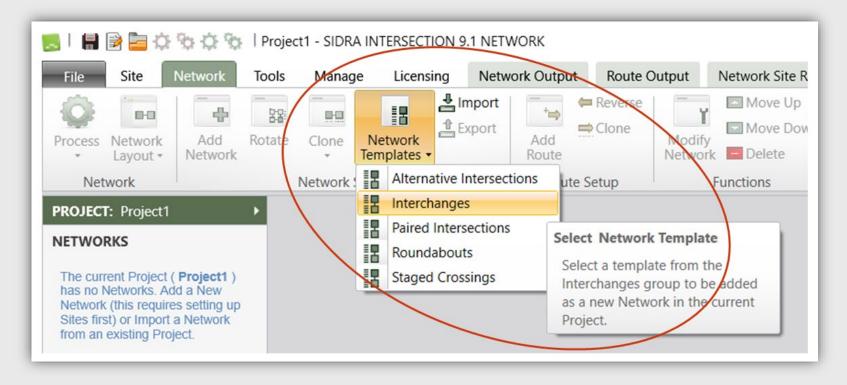
Lane Movements by Movement Class


Midblock Lane Changes

Matching of Upstream and Downstream Lane Flow Rates:

- Implied midblock lane changes
- Effect of this on platoon arrival patterns at signals

Tools to minimise midblock lane flow changes on short internal approaches:


- Special Movement Classes
- Lane Movement Flow
 Proportions
- Lane Utilisation Ratios

SIDRA

Network Templates

Network Templates are accessed using the Network Templates command menu in the Network tab ribbon.

SIDRA INTERSECTION Network Templates

Alternative Intersections

Continuous Flow Intersection (CFI) P-Turn Restricted Crossing U-Turn (RCUT)

Interchanges

Divergabout Interchange Diverging Diamond Interchange (DDI) Double Roundabout Interchange Double Teardrop Roundabout Interchange Partial Cloverleaf (Parclo) Interchange Signalised Diamond Interchange (SDI) Unsignalised Diamond Interchange

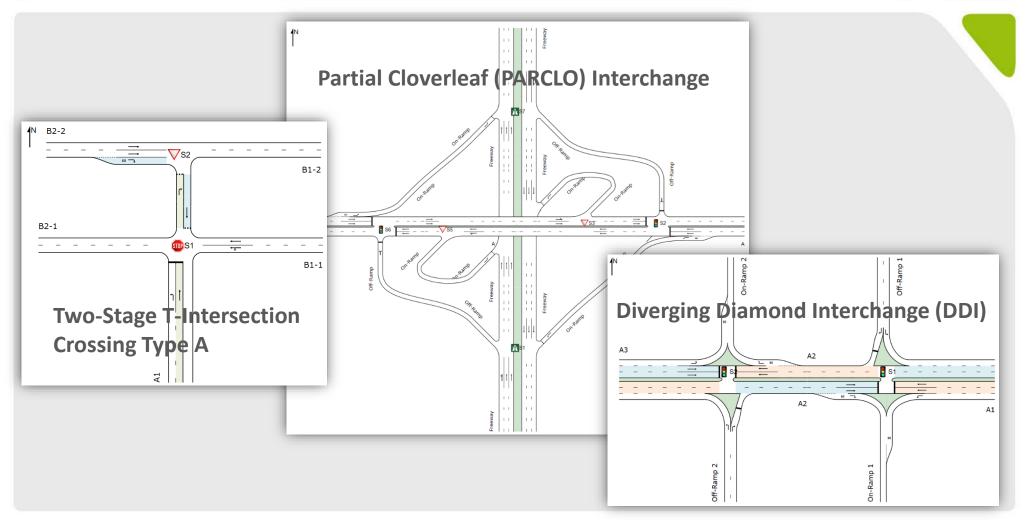
Paired Intersections

Wide-Median Intersection Signals Fully Signalised Roundabouts

Roundabouts

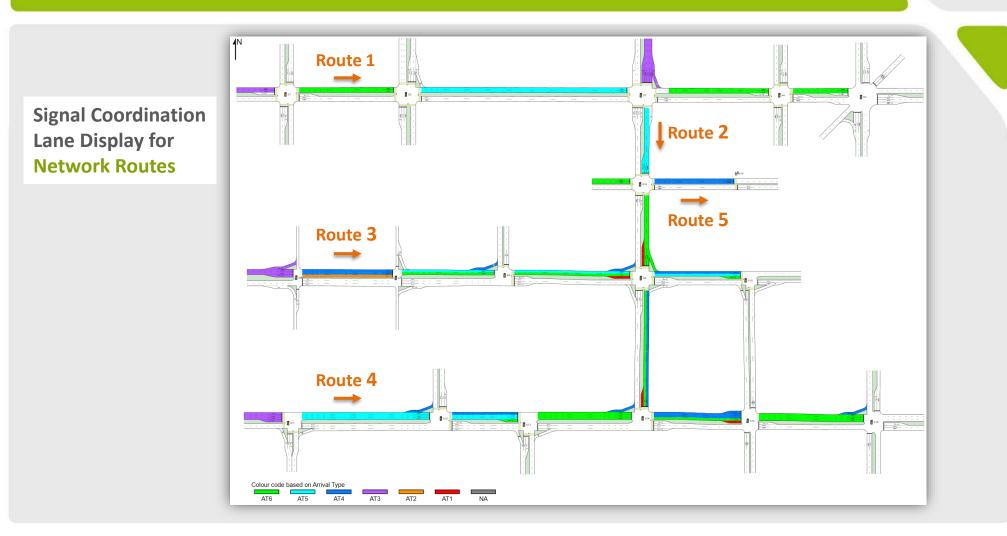
Double Teardrop Roundabout Roundabout with Bicycle Circle Roundabout with Signalised Pedestrian Crossings Roundabout with Unsignalised Pedestrian Crossings

Staged Crossings


Four-Way Intersection Two-Stage Crossing Two-Stage T-Intersection Crossing (Types A and B) Unsignalised Wide-Median Intersection

> For detailed information: SIDRA INTERSECTION User Guide Section 9.4

Staggered T Signals Staggered T Unsignalised

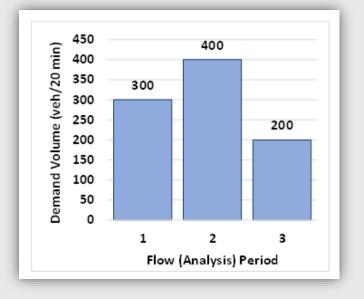


Network Template Examples

SIDRA Network Model Demo

Variable Demand Model

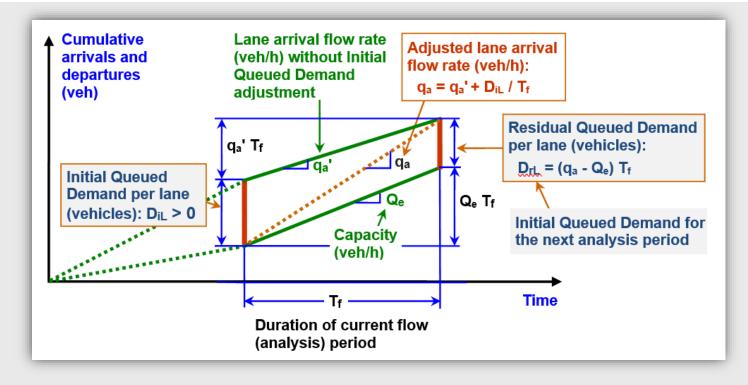
Variable Demand Model for Congestion Modelling -The SIDRA Method

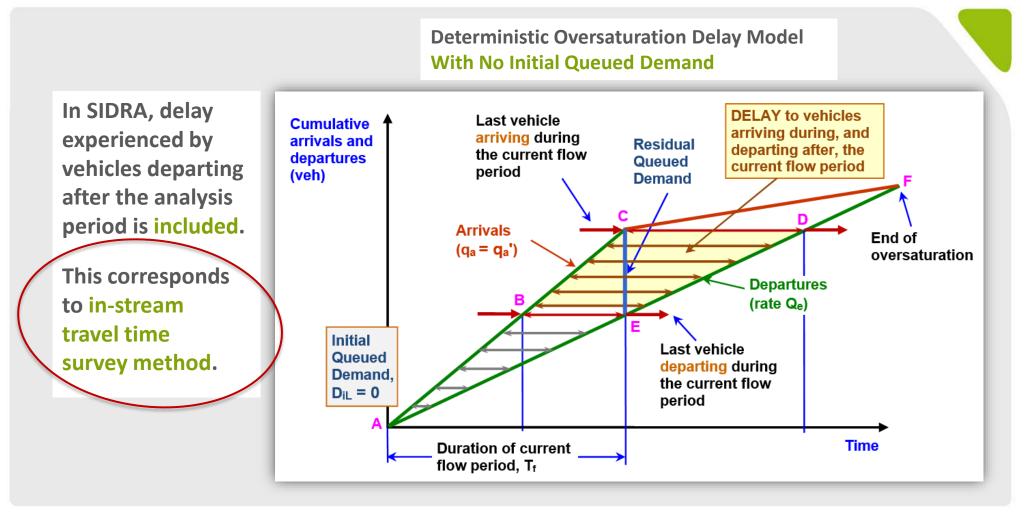

What is Variable Demand Modelling?

The Variable Demand Model is useful for multi-period analysis of persistent congestion.

The model uses the Initial Queued Demand in estimating delays, queue lengths and stop rates when sequential flow periods are analysed in cases of congested conditions.

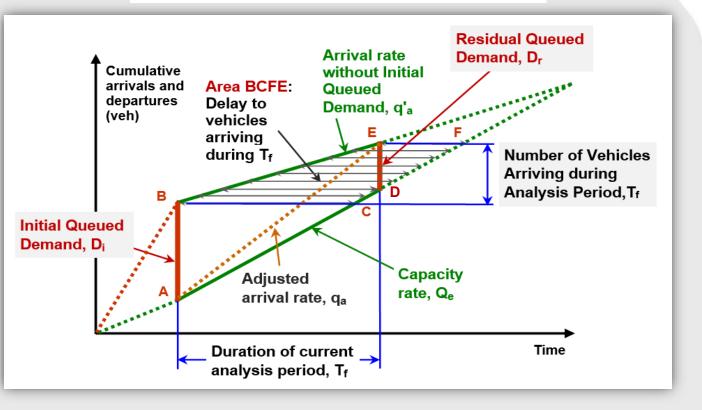
Initial Queued Demand is the Residual Queued Demand left over from the previous flow (analysis) period when a lane is oversaturated (arrival flow exceeds capacity).


This is shown in the next slide.


Initial and Residual Queued Demand

Deterministic queuing theory is used to formulate a deterministic oversaturation delay function. Initial Queued Demand, Residual Queued Demand and Adjusted Arrival Flow Rate are shown here.

Delay experienced by vehicles in oversaturated conditions: No Initial Queued Demand

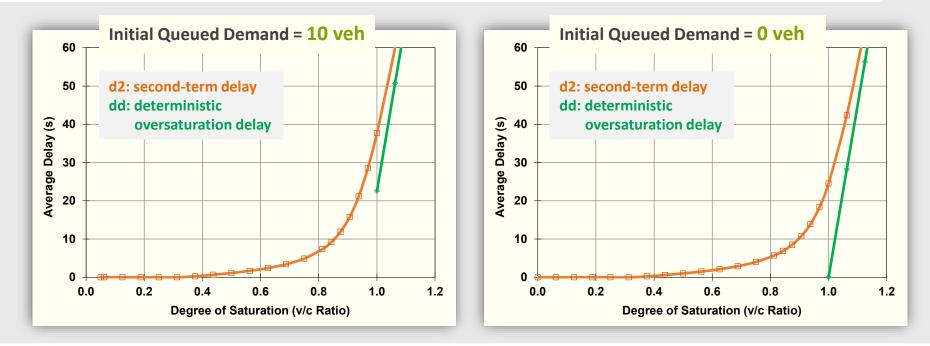

Delay experienced by vehicles in oversaturated conditions

Area ABC: Delay experienced by vehicles arriving before the current flow period (forming the Initial Queued Demand) and departing during the current period; included in delay estimated for the previous flow period.

Area DEF: Delay experienced by vehicles arriving during the current flow period and departing after the current period.

Area BCFE: Delay to vehicles arriving during the current flow period.

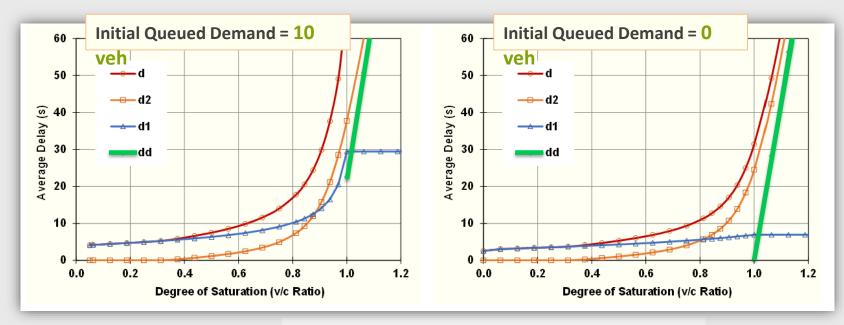
Deterministic Oversaturation Delay Model With Initial Queued Demand



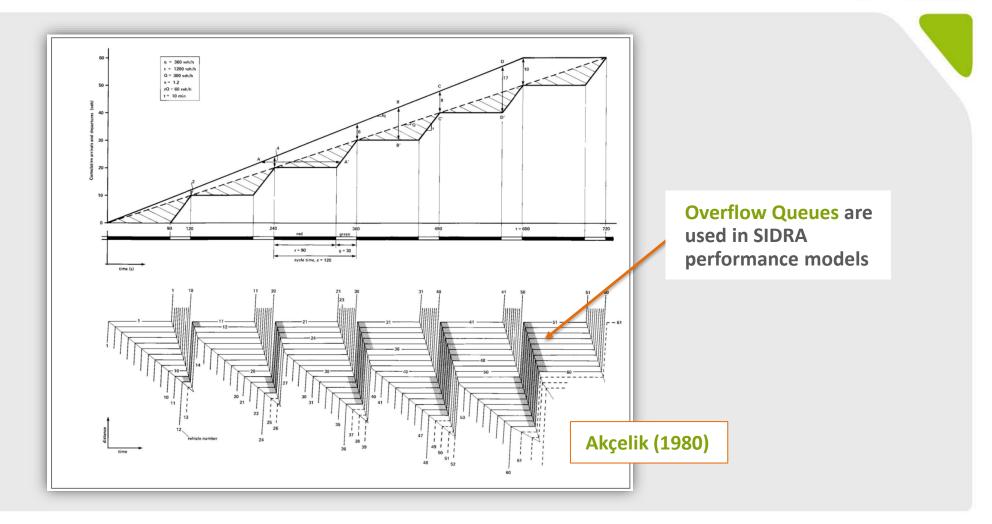
Delay function using the *coordinate transformation technique*

New two-term performance functions have been derived for the Variable Demand Model used in SIDRA INTERSECTION 9.1 using the coordinate transformation technique.

In this method, the second-term delay function (time-dependent congestion term) is asymptotic to the deterministic oversaturation delay function.

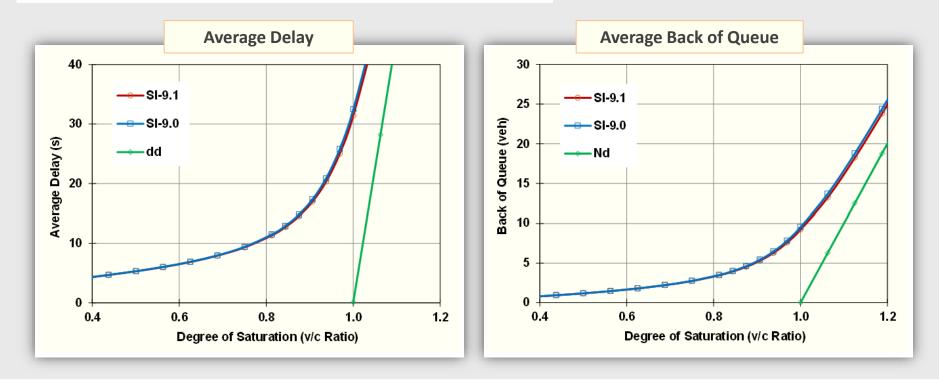

This is the technique used for deriving the models given in ARR 123 (Akçelik 1981).

Two-term Performance Function


Example of delay function for a roundabout case with and without Initial Queued Demand (Capacity = 800 veh/h, Flow Period = 0.25 h)

d = d1 + d2: average control delay
d1: first-term delay (red time or blocked time effect)
d2: second-term delay (congestion effect)
dd: deterministic oversaturation delay

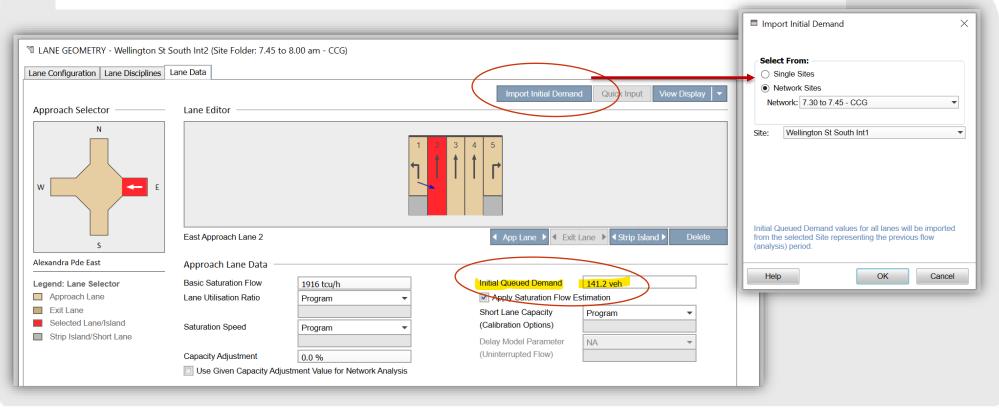
Deterministic queuing theory for oversaturation delay and back of queue



ONS

Small difference in SIDRA INTERSECTION Version 9.1 and older versions

Small difference in delay and back of queue estimates in SIDRA INTERSECTION Version 9.1 and older versions

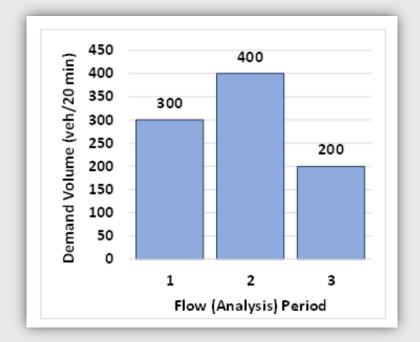

Example for Initial Queue Demand = 0

Initial Queued Demand input in SIDRA INTERSECTION 9.1

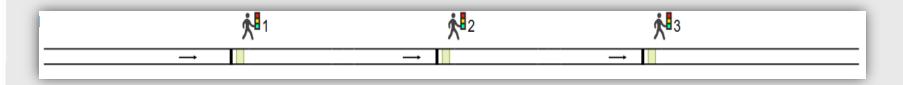
Import Initial Demand function is used to copy Residual Queued Demand values from the Site representing the previous (15-min) flow period as the Initial Queued Demand values for the current Site

Variable Demand Model Basic Example

Variable Demand Model Example for a Basic Network

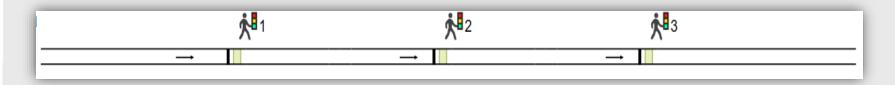

		Site 1	Site 2	Site 3	Route
Travel Distance	m	1000	1000	2000	4000
Cruise Speed	km/h	72	72	72	72
Cruise Travel Time	sec	50.0	50.0	100.0	200.0

Variable Demand Model Example for a Basic Network with three 20-min flow periods


This example shows the complexity added to the variable demand model for Networks due to Capacity Constraint requirements. Three consecutive 20-min flow periods analysed for a simple network of three Sites. Average Flow Rate per hour: 900 veh/h Peak Flow Rate per hour (Period 2): (60/20) x 400 = 1200 veh/h

Peak Flow Factor: PFF = 900/1200 = 0.75 (a high peaking value)

Basic Network - Analysis Period 1



Analysis Period 1	Site 1	Site 2	Site 3	Route	
Input Volume (Demand)	veh/20 min	300	300	300	
Number of Vehicles Arriving	veh	300	300	300	
Capacity	veh	400	/ 300	/ 300	
initial Queued Demand	veh	0	0	0	
Vehicles Arriving + Initial Queued Demand	veh	300	300	300	
Number of Vehicles Departing	veh	300 4	300 4	300	
Residual Queued Demand	veh	0	0	0	
SIDRA Average Travel Time	sec	65.5	114.2	164.2	343.9

Basic Network - Flow Period 2

=

Analysis Period 2	Site 1	Site 2	Site 3	Route	
Input Volume (Demand)	veh/20 min	400	400	400	
Number of Vehicles Arriving	veh	400	_ 340	300	
Capacity	veh	340	/ 300	/ 240	
initial Queued Demand	veh	0	0	0	
Vehicles Arriving + Initial Queued Demand	veh	400	340	300	
Number of Vehicles Departing	veh	340 4	300 4	240	
Residual Queued Demand	veh	60	40	60	
SIDRA Average Travel Time	sec	196.1	176.0	295.6	667.7

Basic Network - Flow Period 3

=

Analysis Period 3	Site 1	Site 2	Site 3	Route	
Input Volume (Demand)	veh/20 min	200	200	200	
Number of Vehicles Arriving	veh	200	260	300	
Capacity	veh	580	/ 580	/ 580	
initial Queued Demand	veh	60	40	60	
Vehicles Arriving + Initial Queued Demand	veh	260	300	360	
Number of Vehicles Departing	veh	260	300 4	360	
Residual Queued Demand	veh	0	0	0	
SIDRA Average Travel Time	sec	51.5	51.6	101.9	205.0

Wariable Demand Model Basic Example Demo

Performance Measure	Vehicles		All MCs (Route)	Pe	rsons								
Travel Speed (Average) Travel Distance (Average) Travel Time (Average) Desired Speed Route Delay (Average) Route Stop Rate	km/h m sec km/h sec		21.6 4000.0 667.8 72.0 467.8 5.35		21.6 000.0 667.8 467.8 5.35	LAN	LANE LEVEL OF SERVICE FOR MOVEMENTS O		MENTS	rs on Route مُ ^{ال} ع	ب ¹ 3		
Route Level of Service (LO Speed Efficiency Travel Time Index Congestion Coefficient	S)		LOS F 0.30 2.22 3.34				ur code based or	a Level of Service	LOS D	LOS E	LOS F		
Route Travel Movement Mov Turn Mov ID Class	t Performa Trav Dist m	n ce Midbl. Delay sec	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop. Queued	Eff. Stop Rate	Aver.Der No. of Cycles	m. Flow Rate veh/h	Arv. Flow Rate veh/h	Deg. of Satn		nple
Site ID: 1 Site Name: Site1 Intv2 Di= West Approach	=0 Dr=60											Route Travel Performance rep	
2 T1 All MCs Site ID: 2 Site Name: Site2 Intv2 Di=	1000.0 =0 Dr=40	0.0	196.1	18.4	146.1	1.00	1.81	2.02	1200	1200	1.176	for Flow Period 2 (Peak perio	u)
West Approach 2 T1 All MCs Site ID: 3	1000.0	0.0	176.0	20.5	126.0	1.00	1.65	1.87	1200	1020	1.133	3	
Site Name: Site3 Intv2 Di= West Approach	=0 Dr=60												
2 T1 All MCs	2000.0	0.0	295.6	24.4	195.6	1.00	1.89	2.31	1200	900	1.250		

Alexandra Parade Corridor Congestion

WINEWS

ABC News: Giulio Saggir

Alexandra Parade Corridor Congestion

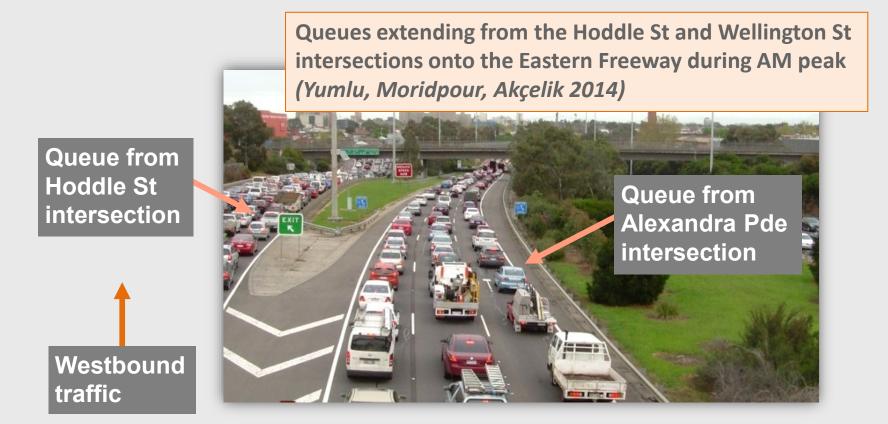
As real-life case study during morning peak period in Melbourne

> Traffic congestion is concentrated along particular routes (Terrill and Batrouney 2017)

> > Photo: ABC News -Giulio Saggin

IMAGE: Traffic on Alexandra Parade

Posted Tue 3 Oct 2017 at 10:47am, updated Tue 3 Oct 2017 at 10:54am


Alexandra Parade Corridor Case

Looking East and showing the Eastern Freeway Westbound approach at 8 am on 19 Sep 2012 (Lay 2019)

Alexandra Parade Corridor Case

Alexandra Pde - Wellington St Intersection (previous study)

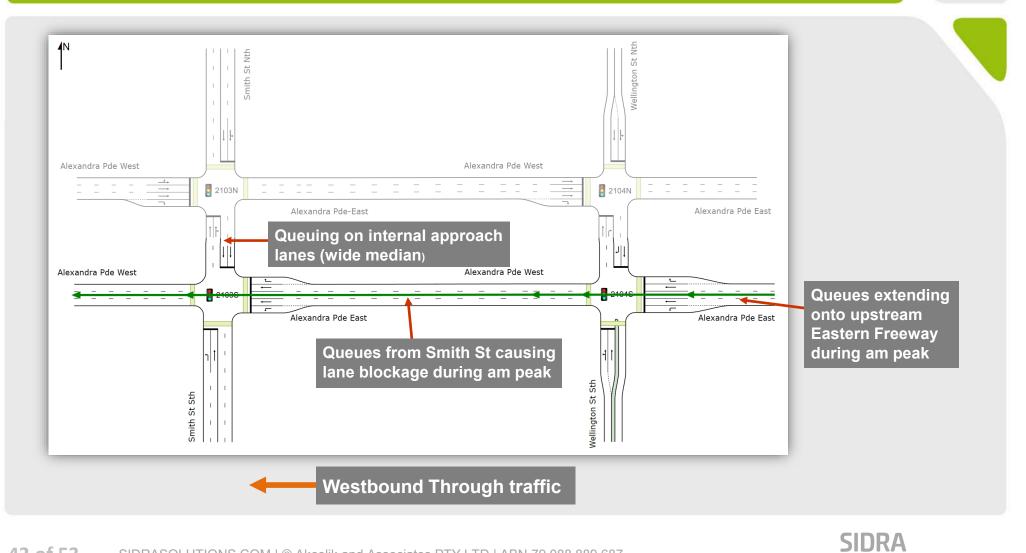
Eastern Freeway

40 of 53

Eastern Freeway section upstream of Wellington St and Hoddle St intersections

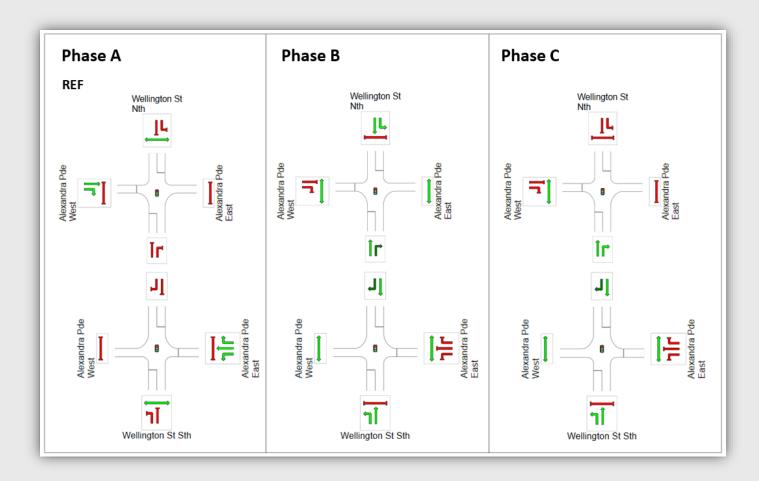
Westbound traffic In am peak period, Eastern Freeway ueues extend towards Chandler Hwy Interchange

SIDRA

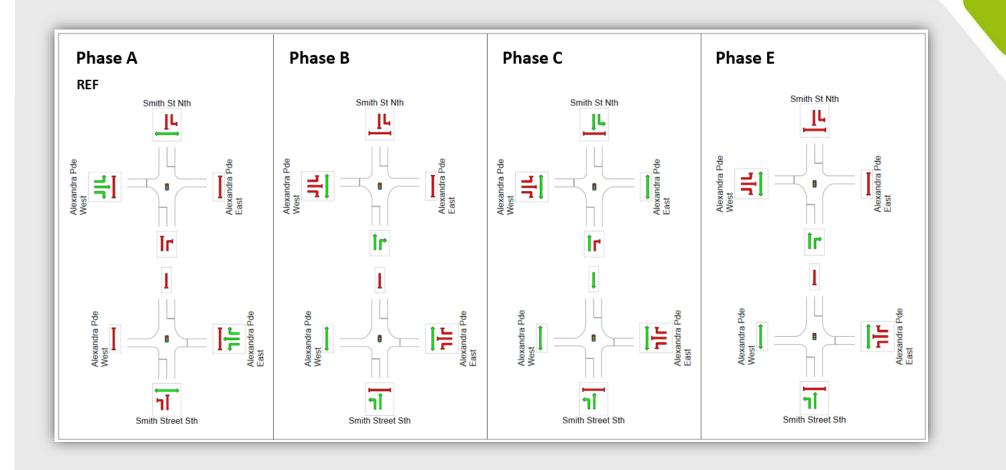

Alexandra Parade Intersections with Wellington St & Smith St

Wide-Median Intersections modelled as Common Control Group (CCG)

Westbound Route in focus



ONS


42 of 53 SIDRASOLUTIONS.COM | © Akcelik and Associates PTY LTD | ABN 79 088 889 687

Signal Phasing for Wellington St and Alexandra Pde

Signal Phasing for Smith St and Alexandra Pde

SIDRA SOLUTIONS

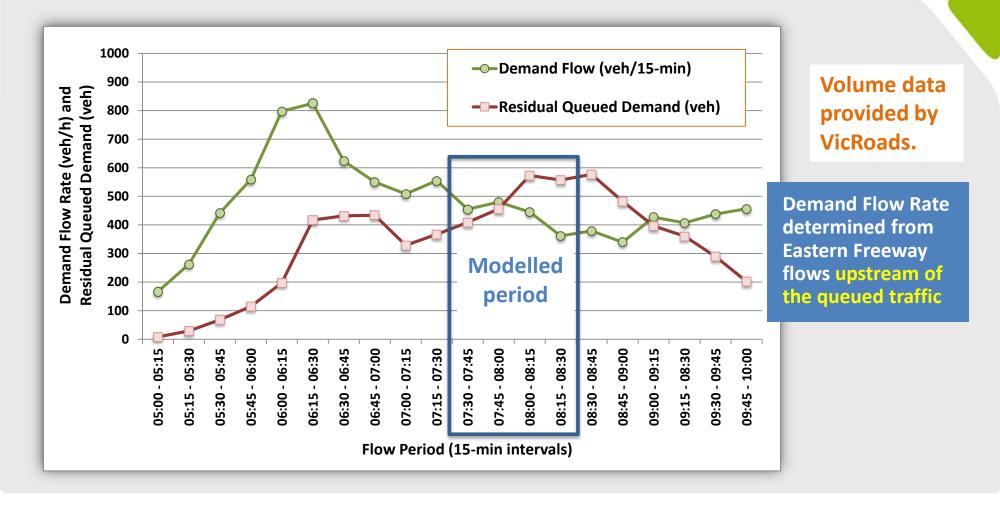
Observed (User-specified) Phase Times and Offsets

Cycle time: 160 s

	Phase A (Reference Phase)	Phase B	Phase C	Phase D	Offset	
Alexandra Pde -Wellington St	110	40	10	-	0	Reference Site
Alexandra Pde - Smith St	92	16	40	12	-18	

Timing values in seconds

SCATS timing and volume data provided by VicRoads.


Previous study

Previous study (*Yumlu, Moridpour, Akçelik 2014***) reported the analysis of a single Site (Alexandra Pde - Wellington St intersection) and a single peak period (7.45 - 8.00 am).**

In the current study:

- A Network model of Alexandra Pde intersections with Wellington St and Smith St. Signals are coordinated.
- 15-min demand flow rates starting at 5.00 am on 5 March 2014 were used to determine the Residual Queued Demand profile.
- Variable Demand Model was applied to four 15-min flow intervals for the 7.30 - 8.30 am flow period. This was used to determine the Initial Queued Demand at the start of 7.30 am peak period (367 veh).
- Results are presented for the 7.45 8.00 am period (observed and estimated Back of Queue values compared).

Demand Flow ad Residual Queued Demand "observed" for East approach of the Alexandra Pde - Wellington St intersection

Key model inputs for calibration

Intersection Approach		a Pde - Well ast Approac		Alexandra Pde - Smith St East Approach				
Lane	2	3	4	2	3	4		
Basic Saturation Flow (veh/h)	1916	1813	1685	1800	1800	1800		
Capacity Adjustment	Program	Program	Program	-50%	-50%	-50%		
Initial Queued Demand for the first interval (7.30 to 7.45 AM)	123 veh	122 veh	122 veh	0	0	0		

Saturation Flow surveys done at the intersections.

SIDRA model estimates of Initial Queued Demand and Back of Queue

	Analysis		Queued	Back of Queue (km)					
	Interval	Deman	d (veh)	Ave	rage	98 th Percentile			
		Observed	Estimated	Observed	Estimated	Observed	Estimated		
	7.15 to 7.30 AM	367	-	-	-	-	-		
	7.30 to 7.45 AM	409	410	-	1.6	-	2.6		
\triangleleft	7.45 to 8.00 AM	456	522	2.5	1.9	3.5	3.2		
	8.00 to 8.15 AM	573	608	-	2.5	-	4.1		
	8.15 to 8.30 AM	557	611	-	2.7	-	4.6		

Wariable Demand Model Alexandra Parade Demo

LANE LEVEL OF SERVICE FOR MOVEMENTS ON ROUTE

B404 BMB 7 45 -- 0.000

									I⇒ Route:			
Route	e Trav	el Performa	ance						4N		al App	
Perfo	rmanc	e Measure	Vehicle	s:	All MCs (Route)		Perso	ns			th Site Intern	
Travel	l Distar	d (Average) nce <mark>(</mark> Average (Average)	km/h) m sec		3.6 1403.0 1422.4		1403 1422		Alexandra Pd	la West		
Route	ed Spe Delay Stop F	(Average)	km/h sec		60.0 1927.6 7.02		1927 7.	7.6 02			21035	Alexandra Pdo
Speed Travel	d Efficie I Time		OS)		LOS F 0.06 0.00 10.00				L	Smith Street Sth		
Conge	estion	Joenncient										
Conge	estion	Coemcient							LOS A	LOS B LOS C	LOS D LOS	E LOS F
Ū												E LOS F
Ū		el Moveme	nt Perform	ance								E LOS F
Ū	e Trav		Trav Dist	Midbl. Delay	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop. Queued			Dem. Flow Rate	e losf Arv. F R
Route Mov ID	e Trav	el Moveme Mov Class	Trav	Midbl.					Eff. Stop	LOSB LOSC Aver. No. of	Dem. Flow	Arv. F
Route Mov ID Site IE Site N	e Trav Turn D: 2104 Name: N	el Moveme Mov Class 4S Wellington St	Trav Dist m	Midbl. Delay	Time	Speed	Delay		Eff. Stop	LOSB LOSC Aver. No. of	Dem. Flow Rate	Arv. F F
Route Mov ID Site IE Site N	e Trav Turn D: 2104	el Moveme Mov Class 4S Wellington St	Trav Dist m	Midbl. Delay	Time	Speed	Delay		Eff. Stop	LOSB LOSC Aver. No. of	Dem. Flow Rate	Arv. F F
Route Mov ID Site IE Site N	e Trav Turn D: 2104 Jame: N Approa	el Moveme Mov Class 4S Wellington St	Trav Dist m	Midbl. Delay	Time	Speed	Delay		Eff. Stop	LOSB LOSC Aver. No. of	Dem. Flow Rate	Arv. F F
Route Mov ID Site IE Site N East A 5 Site IE	e Trav Turn D: 2104 Jame: N Approa T1 D: 2103	el Moveme Mov Class 4S Wellington St ch All MCs	Trav Dist m South Int2 916.5	Midbl. Delay sec	Time sec	Speed km/h	Delay sec	Queued	Eff. Stop Rate	Aver. No. of Cycles	Dem. Flow Rate veh/h	Arv. F F
Route Mov ID Site IE Site N East A 5 Site IE Site N	e Trav Turn D: 2104 Jame: N Approa T1 D: 2103	el Moveme Mov Class 4S Wellington St ch All MCs 3S Smith St-Sou	Trav Dist m South Int2 916.5	Midbl. Delay sec	Time sec	Speed km/h	Delay sec	Queued	Eff. Stop Rate	Aver. No. of Cycles	Dem. Flow Rate veh/h	Arv. F F

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Alexandra Pde Intersections with Wellington St & Smith St Route Travel Performance (7.45 - 8.00 am flow period)

Alexandra Pde East

Alexandra Pde West

2.415

1 161

2104

REFERENCES

AKCELIK & ASSOCIATES (2023). SIDRA Variable Demand Model - Case Study for a Congested Network in Melbourne. Internal Report (Unpublished).

➢ AKÇELIK, R. (1980). Time-Dependent Expressions for Delay, Stop Rate and Queue Length at Traffic Signals. Internal Report AIR 367−1. Australian Road Research Board, Vermont South, Australia.

AKÇELIK, R. (1981). Traffic Signals: Capacity and Timing Analysis. Australian Road Research Board. Research Report ARR No. 123 (6th reprint: 1995).

AKÇELIK, R. and ROUPHAIL, N.M. (1993). Estimation of delays at traffic signals for variable demand conditions. Transportation Research 27B (2), pp 109-131.

⇒ LAY, M.G. (2019). Costing Traffic Congestion. Unpublished paper. Melbourne, Australia.

✤ ROUPHAIL, N.M. and AKÇELIK, R. (1992). Oversaturation delay estimates with consideration of peaking. Transportation Research Record 1365, pp 71-81.

TERRILL, M. and BATROUNEY, H. (2017). Stuck in traffic: We need a smarter approach to congestion than building more roads. The Conversation. Grattan Institute. <u>https://www.abc.net.au/news/2017-10-03/congestion-sydney-melbourne-smarter-approach-needed-than-roads/9010164</u>.

➢ YUMLU, C., MORIDPOUR, S. and AKÇELIK, R. (2014). Measuring and Assessing Traffic Congestion: A Case Study. Paper presented at the AITPM 2014 National Conference, Adelaide, Australia. Available for download from sidrasolutions.com /publications

PRESENTERS

Rahmi Akçelik

rahmi.akcelik@sidrasolutions.com

mark.besley@sidrasolutions.com

lan Espada

Mark Besley

ian.espada@sidrasolutions.com

END OF PRESENTATION

