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Traffic assignment models continue to play a critical role in the transportation 

planning process. Furthermore, day-to-day traffic flow volatility is a well-

acknowledged phenomenon that planners and researchers alike view as 

increasingly important.  Consequentially, current research advances have been 

addressing more complex assignment models capable of representing various 

aspects of volatility. However despite the importance of accounting for volatility, 

deployed assignment models capable of large-scale application have continued 

relying on traditional assumptions of determinism and perfect information. 

This research focuses on the impact of day-to-day demand uncertainty on 

equilibrium-based traffic models by advancing the concept of strategic traffic 

assignment. In the strategic user equilibrium (StrUE) model, the daily travel 

demand is treated as a random variable, and users are assumed to have knowledge 

about the day-to-day demand but are unaware of the specific traffic conditions they 

will experience during travel. Therefore, drivers make a strategic route choice to 

minimize their expected travel cost and follow that route independent of the 

experienced conditions. The result is an equilibrium assignment based on link flow 

proportions, as opposed to link flow volumes. Furthermore, as the day-to-day 

demand realization changes, the equilibrium flow proportions will remain the 

same. Thus, the resulting flows may appear volatile on a day-to-day basis, but can 

actually be represented by a higher level mathematical equilibrium. 

 

Figure 1. Research map summarizing the proposed work 

The strategic concept has profound modelling implications. Part I of this thesis 

explores static models of strategic traffic assignment, including the user 
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equilibrium, the strategic system optimal, and the strategic system reliable models. 

Each of the models is formulated, and model assumptions and solution methods are 

discussed. The performance of each model is then demonstrated and compared on 

a number of test networks, ranging in size from small to large. 

However, strategic traffic assignment is not only significant as a modelling 

approach, but also for the implications of the model in important network 

management applications. Therefore, this thesis implements the strategic traffic 

assignment model in two common transport problems: road pricing and capacity-

enhancement network design. Each of these applications includes a novel model 

formulation, solution approach, and detailed demonstration.  

Part II of this thesis introduces a dynamic strategic assignment model. While static 

equilibrium models are useful for many applications, particularly on in a macro-

level setting, there are a number of important traffic characteristics they cannot 

capture due to their time invariant assumptions. Dynamic traffic assignment is a 

cutting edge extension to the basic models that provide a more realistic 

representation of traffic flow, although they are significantly more complex. In 

order to explore the strategic concept from multiple perspectives, Part II of this 

thesis proposes the strategic system optimal dynamic traffic assignment 

(StrSODTA) and explores a network design application. 

StrSODTA is based on a single destination system optimal model that embeds the 

cell transmission approach to realistically propagate traffic through the network. 

The StrSODTA model retains the linear programming formulation and associated 

benefits, but due to the path based formulation, does face significant issues 

resulting from the number of constraints and corresponding computational 

complexity. While solving for network design in the static case is a challenging 

problem, in the StrSODTA model it is a simple extension with numerous 

implications. 

Figure 1 presents a high-level summary of the proposed work. The core 

contribution of this research is to formulate and explore the implications of the 

strategic approach to accounting for day-to-day demand uncertainty, and 

furthermore to demonstrate the impact on practical transport planning 

applications. 
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1.1 Introduction and Motivation 

Transportation systems shape the fabric of contemporary society. Cities around the 

world rely on their transport system not only for the freedom that comes with 

personal mobility but also for bolstering the national economy, security,  

evacuation in the event of natural disasters, technological innovation, logistics and 

product delivery, and numerous other areas of interest. Advancements in the field 

of transportation have the potential to impact all facets of society, from the daily 

decision-making of the individual choosing how she gets to work to global issues 

that transcend national borders, such as the impact of vehicle emissions on climate 

change. 

 Due to its ubiquitous nature, it is not difficult to imagine the substantial 

amount of money that governments, private corporations, and citizens invest in 

transportation. In Australia, the Departure of Infrastructure and Transport had a 

2013-14 budget of $6.8 billion. In the United States, the Department of 

Transportation had a 2014 budget of $77.2 billion, with a substantial percentage of 

that being invested in infrastructure projects. While there are a wide variety of 

expenses and investments that comprise the portfolio of those large budgets, 
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significant amounts are spent on forecasting future conditions in order to evaluate 

the impacts of a range of factors, including infrastructure projects but also 

unpredictable events such as changes in land use, technological innovations, policy 

decisions, and the state of the economy.  

 However, despite the large amounts of money and significant scope of 

model outcomes, the inherent uncertainty in the underlying transport system and 

corresponding models is often neglected. The lack of consideration of uncertainty 

may be due to a lack of transparent tools to inform practitioners and policy makers, 

in addition to the significant complexity of the problem at hand. Of particular 

interest to this thesis is the daily volatility in traffic flow that has a significant effect 

on how drivers make decisions and on transport system evaluation. 

 This thesis focuses on the area of network modelling, the foundation of 

which is described in Section 2.2. One method of examining flow patterns in a 

transport network is by using traffic assignment models. Given the network 

structure and origin-destination travel demands (which are estimated through 

additional modelling steps in the transport planning process), traffic assignment 

will determine link flow patterns throughout the network, which can then be used 

to estimate travel times and travel speeds. Total system travel time is the most 

commonly used metric of performance for transport models on a macroscopic scale 

because it is considered to be a measure of the congestion that costs travellers 

millions of dollars per year. There are two common formulations that describe the 
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assumptions behind the traffic assignment models: user equilibrium (UE) and 

system optimal (SO). The UE and SO formulations will be discussed in detail in 

Chapter 2. 

 Transport planning agencies around the world use traffic assignment 

models to rank potential infrastructure projects. These models depend upon the 

behavioural assumptions to describe individuals’ route choice selection process; it 

follows that multi-million dollar decisions hinge upon the ability of equilibrium 

models to evaluate the impact of transport network changes. However, the 

questions transport planners are now asking of these models are not the questions 

that these models were originally created to answer. Therefore new models are 

needed to explicitly address the points in question, particularly in regard to 

uncertainties and volatility. Many of these questions are closely connected to the 

uncertainty inherent in the transport planning process, and in travel demand in 

particular. This thesis is motivated by the need to improve transport modelling and 

decision-making in regard to inherent network uncertainties. 

 This thesis introduces a novel formulation for traffic assignment that 

explicitly incorporates demand uncertainty and additionally captures more 

complex behaviour from users. It also addresses the issue of day-to-day flow 

volatility, which describes the recurrent changes in traffic conditions from one day 

to the next. This approach is based on the idea that a strategic approach is the best 

way to describe user behaviour. From the user perspective this means that a 
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person knows of the available routes to take and assigns a probability to each. As 

the person learns about the trip distribution of the network, they update these 

probabilities until an equilibrium based on the expected condition is reached. From 

the perspective of the system operator, this results in a certain proportion of the 

trips that utilize each available path. Because people update their expected 

portfolio of strategies based on the distribution of the trip demand, any given 

actualization of the traffic patterns will not seem to be in equilibrium. In this way, 

this novel formulation for a traffic assignment model is able to capture a more 

complex behaviour from users and to represent the volatility that planners observe 

in day-to-day traffic flow. 

 Transport planners use multiple models and modelling approaches in order 

to evaluate an infrastructure project or policy question. In general, these models 

are macroscopic in nature, meaning that they use average quantities to describe the 

system from a regional perspective (and traditionally cannot capture the volatility 

observed in traffic flow). The modelling approach and application described in 

Chapter 2, 3, and 4 is macroscopic in nature. However, growing in popularity in 

recent years is the microscopic traffic modelling approach, usually simulation 

based. Traffic microsimulators use mathematical representations and probabilistic 

elements of stopping distance and lane-changing behaviour, in addition to many 

more parameters, in order to represent traffic flow on a very fine-grained level. 

However, traffic microsimulation has a significant computational burden, requires 

very detailed input data, and does not account for how any changes may impact the 



5 

way in which travellers select their routes. As a result, traffic microsimulation is 

most suited to investigate projects with a limited localised impact, such as 

environmental impact analyses for proposed structures, parking studies, traffic 

signal timing plans, and numerous other projects. 

 As a compromise between the extreme detail of microsimulation and the 

aggregated estimation of macroscopic models lies a middle ground: mesoscopic 

traffic models. While these modelling conventions are not necessarily completely 

agreed between all traffic researchers, for the purposes of this thesis, models on a 

mesoscopic scale are considered as relative to their counterparts; a mesoscopic 

model captures a greater amount of detail than a macroscopic model, but does not 

preclude the computational burdens of microsimulation. Transport planners and 

practitioners often utilize multiple traffic models in conjugation in order to produce 

a more comprehensive evaluation of network behaviour. Therefore, in addition to 

the static transport planning model that is proposed in Chapter 2, Chapter 5 

proposes a strategic dynamic traffic assignment model that can capture traffic 

characteristics such as spillback and shockwave propagation. 

 Transport policy is informed by decision-making tools that are built on 

planning models. Most planning organizations use regional models on multiple 

scales to make decisions about the future of the locale. However, it is well-

acknowledged that underlying physical activities that comprise the transport 

system are immensely complicated, and furthermore the aggregate of numerous 
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stochastic processes including individual decision-making. Just like predicting the 

stock market, the agents are too numerous to predict with exact accuracy. Add in 

the sheer size of many regions of interest, the significance of the decisions being 

made, and the need of politicians for accountability and it becomes clear that 

transport planning is a very complex topic. 

 Therefore, researchers are constantly seeking improvements to transport 

planning models that account for more diverse aspects of the system at hand but 

that are also reliable, based on sound behavioural assumptions, and able to be 

scaled up to practically-sized problems. Due to numerous critical issues affecting 

cities all over the world, it is more important than ever before that planners have 

tools that inform robust policy. The research in this thesis aims to provide the 

foundation for such a tool. 

1.2 Contributions 

This thesis introduces the novel strategic-based framework that incorporates 

travel demand uncertainty and allows planners to quantify network reliability. 

Additionally, due to the straightforward assumptions at the foundation of the 

framework, the strategic approach can be scaled to practically-sized problems. 

Figure 1:1 emphasises the core contribution of this thesis. 
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Figure 1:1 Fundamental thesis contribution 

This research contains the first attempt to model the strategic framework 

comprehensively, on multiple scales and in the context of practical planning 

applications. The contributions of this research are summarised as follows: 

Formulate the strategic modelling framework on multiple scales. 

j Firstly, a set of time invariant models to capture the effects of day-to-day 

demand uncertainty on user route choice on a macroscopic scale; 

j Secondly, a dynamic strategic linear programming approach that 

accounts for demand uncertainty and system optimal behaviour from a 

mesoscopic perspective. 

Provide a robust means of measuring the tradeoff between travel time and 

reliability while providing a means to quantify the variance of travel time on a 

link and in the system as a whole. 

j Due to the fundamental assumptions, the model can be applied to 

practically sized network problems. 

Investigate the impacts of the strategic approach in the context of practical and 

relevant planning applications. 

 

Formulate and explore the implications of the strategic approach to 
accounting for day-to-day demand uncertainty from both a static and 
dynamic perspective; 

Furthermore, to demonstrate the implications for practical transport 
planning applications. 
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j Both static and dynamic approaches to ranking infrastructure projects in 

the context of the capacity enhancement network design problem, 

including mathematical formulations and solution approaches; 

j A novel marginal social cost based pricing scheme and a method to 

evaluate the impact of long term demand uncertainty on network 

performance; 

Propose a framework that includes a clear outline of all assumptions and 

solution methods, leading to numerous direct extensions. 

j Each chapter includes a thorough discussion of its relevant research 

contributions and suggestions for future research directions. 

The next section describes the structure of this thesis and includes a summary of 

the content of each chapter. 

1.3 Organisation 

This thesis introduces a novel approach to the traffic assignment problem, broadly 

classified as the strategic approach. These models are investigated in two separate, 

but related, approaches: Chapters 2, 3, and 4 explore time invariant time invariant 

strategic traffic assignment models. First, the base model and variants is 

introduced, formulated including a detailed discussion of assumptions, the solution 

method investigated, and then all models demonstrated and compared. This thesis 

places particular emphasis on the practicality of this approach, and so the next 

topic explores two realistic applications of the static strategic assignment models: 

first best pricing and capacity network design. Chapters 5 and 6 explores dynamic 

modelling approaches, beginning with the introduction of the strategic system 

optimal dynamic traffic assignment model and additionally investigating the 
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capacity enhancement network design problem. Figure 1:2 presents a summary of 

the research work in this thesis and the following paragraphs describe each 

chapter in greater detail. 

 

Figure 1:2 Framework of thesis research 

Chapter 2: Time Invariant Modelling Framework. Time invariant modelling 

approaches to solve the traffic assignment problem are one of the most widely used 

transport planning tools. Chapter 3 introduces the three strategic models of 

interest in this work. First, background to transport planning models and relevant 

literature to uncertainty traffic assignment is reviewed. Then, the chapter discusses 

and formulates the models, reviews the model assumptions and the solution 

method. The models are then demonstrated on a number of test networks. Results 

reflect the tradeoff between travel time and reliability. 
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Chapter 3: Road Pricing Application. Planning models such as the StrUE model 

proposed in Chapter 2 are useful to practitioners because of their numerous 

practical applications. Road pricing schemes are commonly regarded as one of the 

primary management tools available to network operators to manage congestion 

and growth in an urban network. Chapter 3 introduces a first best, marginal-social 

cost pricing scheme based on the strategic approach, including model formulation 

and solution approach. Additionally, Chapter 3 highlights the importance of 

accounting for the performance of a model under long term planning demand 

uncertainty. Results show how modelling evaluations could be suboptimal if long 

term uncertainty is neglected. 

Chapter 4: Network Design Problem. The ranking and evaluation of 

infrastructure projects is probably the most common planning application of  traffic 

assignment models such as those described in Chapter 2. It is particularly 

important to incorporate the unpredictable effects of day-to-day demand 

uncertainty may have on the ranking of infrastructure projects; however, as 

discussed in Chapter 2, daily operational capacity may be another non-

deterministic quantity that users consider when making a route choice. Therefore, 

Chapter 4 compares the strategic user equilibrium model introduced in Chapter 2 

and the strategic user equilibrium with capacity uncertainty model, introduced by 

Wen et al (2014), for the ranking and evaluation of network design projects. This 

chapter formulates the model, discusses assumptions and performance measures, 

then discusses the genetic algorithm used as a solution method. 
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Chapter 5: Dynamic Modelling Framework. Planners commonly utilize a number 

of transport models on different scales, either in tandem or for comparison, in 

order to get a more holistic characterisation of a transport system. Therefore, 

Chapter 5 of this thesis focuses on a dynamic strategic traffic assignment model. 

Dynamic traffic assignment can capture important traffic phenomenon that is 

lacking in its static counterparts, such as queuing and shockwave propagation. 

However, introducing the element of time has a significant impact on the 

computational complexity of the problem, and thus, a majority of dynamic traffic 

assignment models are simulation-based and deterministic.  

The model introduced in Chapter 5 of this thesis is based on a linear 

programming foundation that incorporates the cell transmission model and 

strategic path proportions across multiple demand scenarios. The linear 

programming formulation allows well-established solution approaches to be 

utilized, although the addition of  demand scenarios increases the size of the linear 

program significantly. Chapter 5 discusses background to the dynamic traffic 

assignment problem, then formulates the strategic system optimal dynamic traffic 

assignment model. Chapter 5 also describes a solution method that incorporates 

static planning data with reasonable assumptions in order to provide a possible 

platform for rough comparison between the models introduced in this thesis. 

Results show the propagation of traffic in a simple scenarios, then compare the 

results on the Sioux Falls network. 
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0: Dynamic Network Design Problem. This thesis examines a network 

management application for the dynamic strategic system optimal linear 

programming model. Dynamic network design approaches that incorporate 

uncertainty are not common in the past literature due to the significant complexity 

of the problem; however, the dynamic model proposed in this thesis incorporates a 

linear programming formulation at its core, and therefore capacity expansion is a 

relatively simple extension (unlike the complex problem seen in Chapter 4). The 

network design problem is formulated and demonstrated on three test networks of 

various sizes.  Results show that different design project selections based on 

different demand scenarios. 

Chapter 7: Conclusion. Finally, the relevant conclusions from the thesis are 

summarized. One of the advantages of the strategic framework of focus in this 

thesis is the many avenues of future research. A number of extensions and 

advancements are discussed. 
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2.1 Introduction 

Decisions made on the transport policy level have a significant impact on both the 

day-to-day lives of the public and the long-term vitality of the region served by the 

transport system. Therefore it is vital that planners have robust, transparent tools 

to inform decision-making that account for the range of diverse factors that affect 

the transport system. This thesis focuses on modelling approaches that account for 

the impact of uncertainty in day-to-day demand. 

 
 

Figure 2:1 Summary of research contribution 

 

Formulation and solution methods for the strategic user equilibrium, 
strategic system optimal, and strategic system reliable models. 

• Accounts for day-to-day demand uncertainty;
• Flexible framework, scalable to large networks

Demonstration and comparison of models on a variety of test networks 
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Chapter 3 introduces three time-invariant models that encapsulate the strategic 

approach to modelling day-to-day flow volatility in traffic assignment. The strategic 

user equilibrium (StrUE) model captures the behaviour of users based on the 

economic concept of equilibrium, where routes are identified to minimize 

individual travel time. The strategic system optimal (StrSO) model identifies the 

user routes that will minimize the travel time on a system level. The StrSO reflects 

important system behaviour and is useful for applications such as marginal social 

cost pricing. Finally, the strategic system reliable (StrSR) model identifies user 

routes that minimize the variation of total system travel time, which is a measure of 

network reliability. The strategic models are outlined in Figure 2:2. 

 

Figure 2:2 Summary of the strategic user equilibrium model framework 

Together, the StrUE, StrSO, and StrSR models characterize and quantify important 

aspects of network uncertainty that may have significant policy implications for 

transport planners. 

Routes assigned to minimize individual user expected travel time

Routes assigned to minimize expected total system travel time

Routes assigned to minimize variance of total system travel time
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 While traditional transport models have relied primarily on travel time as a 

performance metric, increasingly planners recognize the importance of alternative 

considerations such as reliability and travel time variability. Previous research has 

demonstrated that users value travel time variability as well as minimizing travel 

time (Senna, 1994). This research develops a novel framework to evaluate 

performance and reliability in a transportation network.  

 Chapter 2 is outlined as follows. First, Section 2.2 provides a background on 

transport modelling and the uncertainty in transport networks. Section 2.3 

describes the models and provides the mathematical formulation of each. Then, 

Section 2.4 discusses important model assumptions and model performance 

metrics. Section 2.5 describes the solution approach in detail. Finally, Section 2.6 

demonstrates the models on a number of test networks. 

2.2 Literature Review 

Models in transport planning have rich history in both research and practice. This 

section provides context for the strategic traffic assignment approach, including a 

review of the traditional traffic assignment problem and other approaches to 

modelling uncertainty and reliability in transport networks. 

2.2.1 Background of transportation planning and modelling 

Engineers and scientists use models to simplify and abstract a complex, changing 

world. Models serve a wide range of purposes; from a philosophical perspective, 
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some parties believe that the purpose of models is to enhance understanding and 

help explain understanding. Other parties believe that the utility of models lie in 

their predictive accuracy. Both of these frames of thoughts are represented in the 

transport modelling community. From the transport perspective, mathematical 

models are applied for a variety of purposes. Often the modeller seeks to identify 

the key connections between causes and effects in transport decision-making, 

either from the providers of transport services or by transport users.  

 Transport models require the representation of transport infrastructure and 

services, along with time and space, where travel demand manifests. This is 

commonly achieved through the use of transport networks. Networks have a wide 

variety of applications, such as the intricate networks of pipes that supply water in 

a city, the supply of electricity through the grid, communication networks 

(including phones, internet, data), and even more conceptual ideas such as a social 

network, which describes the interactions and connections of different groups of 

people. Transportation is a prime application of many network flow problems, such 

as the traffic assignment problem, the shortest path problem, and the vehicle 

routing problem. A road network is commonly represented as a set of links and 

nodes. Links represent roads, the physical space that vehicles must travel. Nodes 

may represent the connection between links. For a user to travel across a link, they 

incur some cost, generally a measurement of time. Generally, the capacity of a link 

is seen as finite. 
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 The history of analytical transportation modelling dates to the 1950s. 

Throughout that time, the primary tool for forecasting future demand and 

performance of a transportation system has been the four-step model. The first 

three steps comprise the travel demand modelling process: trip generation, which 

examines data and other indications of where people live or work, or other 

activities that generate trips. This process results in an estimation of productions 

and attractions (of trips). The second step is trip distribution where the estimation 

from the previous step is transformed into trips. The third step is mode choice 

where the trips are divided among available modes, usually based on some 

measure of travel cost/impedance. The final step is traffic assignment, or route 

choice, in which the routes for trips (usually vehicle trips) are determined. 

Although it is important to note that the four-step model includes a feedback 

mechanism, for example where the travel costs determined through traffic 

assignment can be used to adjust the distribution of trips and mode choice, traffic 

assignment essentially yields link flows, and the corresponding system 

performance measures. 

 

Figure 2:3 The four-step transport planning process 

The core assumptions of traffic assignment are founded on the equilibrium 

principle. Equilibrium is an economic concept in which there is a “balance” between 
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the demand and supply, and it describes numerous markets for commodities, such 

as petrol. In the transport system, “demand” is users who wish to travel and the 

“supply” may be the infrastructure supplied by the transport planner. In the state of 

equilibrium, no trip-maker has incentive to behave differently than they already do. 

This descriptive principle is at the core of many approaches describing traffic on 

road networks: at a Wardropian equilibrium, no single user can decrease her travel 

time by unilaterally changing routes (Wardrop, 1952). For a network made up of N 

nodes and A arcs, the nonlinear mathematical programming formulation for 

traditional UE is that by Beckmann et al (1956) and is contained in Equations (2.1) 

- (2.4) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∫ 𝑡𝑖𝑗(𝑦)𝑑𝑦

𝑥𝑖𝑗

0∀(𝑖,𝑗)∈𝐴

  (2.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ 𝑓𝑘
𝑟𝑠

𝑘

= 𝑞𝑟𝑠 ∀𝑟, 𝑠 (2.2) 

𝑓𝑘
𝑟𝑠 ≥ 0 ∀𝑘, 𝑟, 𝑠 (2.3) 

𝑥𝑖𝑗 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑖𝑗,𝑘

𝑟𝑠

𝑘𝑠𝑟

          ∀𝑎 (2.4) 
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Where 𝑡𝑖𝑗(𝑥) is the travel time on link (𝑖, 𝑗) given 𝑥𝑖𝑗  flow on the link, 𝑞𝑟𝑠 is the 

demand between nodes 𝑟 and 𝑠 (𝑟, 𝑠 ∈ 𝑁), 𝑓𝑘
𝑟𝑠 is the flow on path 𝑘 between nodes 

𝑟 and 𝑠, and 𝛿𝑖𝑗,𝑘
𝑟𝑠   is an indicator equal to 1 if link (𝑖, 𝑗) belongs to path 𝑘 between 

nodes 𝑟 and 𝑠, and 0 otherwise. Constraint (2.2) says that the path flow on a path 

will be equal to the demand, (2.3) is the non-negativity constraint for path flow, and 

(2.4) disaggregates path flow to link flow.  

 The objective function of this formulation has no intuitive meaning; rather, 

meaning can be found in the optimality conditions (not shown here) which specify 

that each user will take the shortest path (Sheffi, 1985). This is one of the most 

important implications for this formulation, and follows from the behavioural 

assumption discussed above. The gradient of the UE problem is the shortest path 

problem. Therefore gradient-based optimization methods can be used to solve. 

Most generally a transport network equilibrium problem can be solved by 

assigning all flow to the current shortest path, updating costs, reassigning the flow, 

iteratively. Eventually the equilibrium condition will be met where no user can 

change paths for a shorter travel time. Alternatively, the classic UE model has been 

formulated as a variational inequality, complementarity system, or fixed point 

problem. Section 2.5 contains a more thorough discussion of solution approaches.  

 The system optimal formulation does not reflect behavioural assumptions 

about users in the system, but rather the optimization problem that minimizes total 

system travel time. In this formulation, it would be possible for a single user to 



 

 

20 

 

change paths for a shorter travel time. Rather, the SO formulation is reflective of 

shortest marginal cost path where no user can change paths for a shorter marginal 

cost travel time, where the marginal cost represents the cost to the system of 

adding one user to the path (or link). 

  The objective function for this mathematical programming formulation is 

more intuitive: simply minimize the total time for each user on each link. The 

constraints for this program are the same as the UE problem above which reflects 

the fact that these formulations are closely related to each other. The SO 

mathematical program is shown below (Sheffi, 1985): 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑖𝑗𝑡𝑖𝑗(𝑥)

∀(𝑖,𝑗)∈𝐴

  (2.5) 

s.t.    

 ∑ 𝑓𝑘
𝑟𝑠

𝑘

= 𝑞𝑟𝑠 ∀𝑟, 𝑠 ∈ 𝑁 (2.6) 

 𝑓𝑘
𝑟𝑠 ≥ 0 ∀𝑘 ∈ 𝐾, 𝑟, 𝑠 ∈ 𝑁 (2.7) 

 𝑥𝑖𝑗 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑖𝑗,𝑘

𝑟𝑠

𝑘𝑠𝑟

          ∀(𝑖, 𝑗) ∈ 𝐴 (2.8) 

 

System optimal formulations have important implications for the system. The total 

travel time in this formulation is the best possible performance for a network, so it 
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serves as a lower bound for UE problems. It also describes the behaviour that 

system operators would enforce from users if they could. This is an important idea 

for tolling problems, where operators want to incentivize users to take the optimal 

paths in order to reduce overall network congestion. 

 Traditionally, both of these formulations require that user have perfect 

information (i.e., they know the shortest path), and that the demand 𝑞𝑟𝑠 be known. 

The former concern is addressed through stochastic equilibrium (discussed in 

Section 2.2.2). The latter concern is a primary motivator for this research. In reality 

travel demands are not known with any level of certainty, although planners do 

have some information about the demand. Furthermore, the equilibrium behaviour 

that is foundational to the UE model is not observed in everyday traffic flow, i.e., 

one can observe the same intersection every day and not see the same flow. 

 Both the popularity and the profound impact of the traditional UE problem 

are reflected by the numerous variations proposed over the years: stochastic user 

equilibrium (Mirchandani & Soroush, 1987), probabilistic user equilibrium (Lo & 

Tung, 2003), demand driven travel time reliability-based user equilibrium (Shao et 

al, 2006b), dynamic user equilibrium (Friesz et al, 1993; Han & Heydecker, 2006), 

late arrival penalised user equilibrium (Watling, 2006),  user equilibrium with 

recourse (Unnikrishnan & Waller, 2009), mean-excess travel time user equilibrium 

(Chen & Zhou, 2010), traffic equilibrium under behavioural inertia (Xie & Liu, 
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2014), and more, summarized in Table 2-1. Note that the models are listed 

alphabetically. As appropriate, these models will be described in more detail below. 
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Table 2-1 Summary of a few notable equilibrium model variations 

Model Key Works Summary Assumptions Additional notes 

demand driven time 
travel reliability-
based user 
equilibrium (DRUE) 

 Shao et al (2006a) 

Route choice based on travel time 
budget which is average travel time 
plus  extra buffer time; model 
extension accounts for user error in 
perception 

Versions with and without 
accounting for error in user 
perception (Shao et al, 
2006b) 

Related to travel time 
budget approach of Lo 
et al (2006) 

deterministic user 
equilibrium (DUE) 

Wardrop (1952); 
Beckmann et al (1956); 
Sheffi (1985) 

The travel time on all used paths 
between an OD pair are equal and 
minimum 

Perfect information; risk 
neutral behaviour; fixed 
demand and capacity; 

Difficult to observe in 
reality but widely used 
in practice 

dynamic user 
equilibrium (also 
DUE) 

Friesz et al (1993) 
The travel time on all used paths for 
each OD pair and each departure time 
are equal and minimum 

Time dependent; mostly 
deterministic and perfect 
information; 

Difficult to formulate 
and solve 

late arrival 
penalized user 
equilibrium 
(LAPUE) 

Watling (2006) 
Incorporates a schedule delay term in 
disutility function to penalise late 
arrival under fixed departure times 

Incorporates mixed 
distributions of travel times 

Unreliability based rule 
later incorporated in 
Chen and Zhou (2010) 

mean excess travel 
time user 
equilibrium (METE) 

Chen and Zhou (2010) 

Route choice considers both travel time 
budget as reliability measure  (travel 
time budget) and unreliability measure 
(late arrival penalty) 

Mean excess travel time 
defined as conditional 
expectation of travel times 
beyond the travel time 
budget 

travel time reliability 
and travel time budget 
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Model Key Works Summary Assumptions Additional notes 

probabilistic user 
equilibrium (PUE) 

Lo and Tung (2003); Lo 
et al (2006) 

Travel time distributions of all used 
routes have the same mean, which is 
the minimum for that OD pair, and all 
used routes have a variability within an 
acceptable range 

variation in travel time 
caused by link capacity 
degradation random variable 

Lo et al (2006) expand 
to account for risk 
adverse behaviour and 
travel time budget 

stochastic user 
equilibrium (SUE) 

Daganzo and Sheffi 
(1977); Mirchandani 
and Soroush (1987) 

Travel cost accounts for error in user 
perception 

Commonly assume error 
follows logit or probit 
distribution  

Can be extended to 
include numerous 
model variations;  how 
to calibrate parameter 

strategic user 
equilibrium (StrUE) 

Dixit et al (2013); this 
thesis 

Route choice based on minimizing 
expected cost; equilibrium based on 
fixed proportion assignment 

Users have perfect 
knowledge of demand 
distribution; homogenous 
travellers; 

Core assumptions 
facilitate large-scale 
application 

user equilibrium 
with recourse (UER) 

Unnikrishnan and 
Waller (2009) 

Adaptive route choice based on policies 
that incorporate information gained 
during travel 

Multiple possible network 
states and associated 
probabilities 

Based on online-
shortest-path routing 
problem 

user equilibrium 
under behavioural 
inertia 

Xie and Liu (2014) 

Route choice based on concept of 
behavioural inertia, which describes 
the tendency to switch routes on the 
basis of ongoing experience 

Network supply and demand 
changes and different level of 
behavioural inertia result in 
mixed equilibrium 

Recent work 
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2.2.2 Uncertainty and reliability in transport modelling 

Accounting for uncertainty in transport planning encompasses network analysis 

under a variety of possible scenarios rather than the unrealistic assumption of 

deterministic, or “expected” conditions. As Waller et al (2001) discuss, planning 

agencies often employ the implicit assumption that the expected performance of a 

system is equal to the system’s performance at the expected value, an assumption 

that only holds for linear systems. Thus, using a single fixed point estimate of the 

expected future demand (and neglecting the impact of long term demand 

uncertainty) can lead to the significant overestimation of future system 

performance, which has further negative ramifications on project rankings.   

 In particular, incorporating uncertainty in modelling attempts to account for 

the impact of possible deviant model behaviour and how it may influence 

important policy decisions. Uncertainty in transport modelling is a well-explored 

topic, but there remains numerous, critical questions to be answered.   

 Transport modellers widely acknowledge that uncertainty may arise from a 

number of possible sources, as summarized in Figure 2:4. Commonly, these source 

are categorized an endogenous or exogenous, supply or demand, on the time frame 

of consideration, and additionally effects such as behaviour, which aren’t related to 

travel decision, network infrastructure, or the time frame of consideration. Demand 

typically refers to travel by users of the system; supply typically refers to the 
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infrastructure that planners provide. The background of research relating to each is 

traced below.  

Figure 2:4 Summary of sources of uncertainty in the transport system 

Capacity degradations in traffic networks were first explored as a part of 

equilibrium analysis by Arnott et al (1991), who consider the impact of differing 

levels of information on traffic congestion, and Chen et al (2002), who examine 

capacity reliability, which is defined as the probability that the capacity of an arc 

will be adequate to meet the demand. Lo and Tung (2003) propose a probabilistic 

user equilibrium, where the equilibrium is based on the travel time distribution for 

an OD pair and a maximum variability condition. Lo et al (2006) extend the 

probabilistic user equilibrium to include users with different levels of risk aversion, 
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where users minimize a travel time budget and require a punctual arrival, where 

capacity was treated as a uniform random variable subject to traffic incidents. Lam 

et al (2008) propose a traffic assignment model as a fixed point problem that 

accounts for the impact of predictable, adverse weather patterns, including its 

effect on demand, capacity, and travellers’ perception errors.  

 The uncertainty in travel demand has also been treated from a number of 

perspectives in the equilibrium modelling community, including: expected, elastic, 

stochastic, strategic, inertial. Asakura and Kashiwadani (1991) were among the 

first to consider network reliability as the consequence of daily variation in travel 

times. Bell et al (1999) use a sensitivity based techniques to analyse the impact of 

travel demand fluctuations. Bell (2000) proposed a game theoretical approach 

which accounts for the situation where users are extremely pessimistic about 

travel time. Yin and Ieda (2001) consider the issue of nonrecurrant congestion.   

 Others have employed methods formed on a statistical techniques. Clark and 

Watling (2005) consider the effect that demand uncertainty has on the travel time 

distribution of arcs. Watling (2006) extends this model to include a late arrival 

penalty, where the travel time of arcs follow a probability distribution, but utility is 

based on users’ arrival time at the destination relative to a preferred schedule. 

 The assumption of perfect information is often managed through stochastic 

user equilibrium (SUE). SUE is well-established method of accounting for error in 

user perception. The most common application of stochastic user equilibrium 
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applies a discrete choice model (such as the logit distribution) to determining 

travel costs. Dial (1971) was among the first to address a stochastic user 

equilibrium problem using analytical methods. Daganzo and Sheffi (1977) and 

Sheffi and Powell (1982) incorporated the Wardropian equilibrium principle that 

explicitly treats user perception as stochastic. Hazelton (1998) proposed a 

conditional stochastic user equilibrium that is a generalized version of the SUE 

model with stochastic flows. Additionally, many of the models described above 

under demand and supply have been extended to account for a  stochastic variation 

(Connors & Sumalee, 2009; Damberg et al, 1996) 

 While stochastic user equilibrium may appear to have close similarities to 

the strategic approach proposed here (particularly because discrete choice models 

are used to find the probability of users taking a particular path), strategic 

specifically addresses the uncertainty in demand (not user path choice), and the 

proportions emerge from uncertainty in the number of trips taken, not error in 

user perception. 

 Though these works do not have a direct influence on the currently 

proposed research, they have built a repertoire of important tools that lay the 

foundation for the strategic traffic assignment approach proposed here. 

2.2.3 Strategic traffic assignment 

This work advances the concept of strategic traffic assignment. This idea examines 

the behavioural aspect of travellers in a transport network: users may know of a 
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number of paths that are available for them to take, and as such develop a mixed 

strategy, which in essence assigns a specific probability of use to each path. To 

further clarify this idea, a strategy may be thought of as a plan that encompasses all 

possible outcomes (i.e., realizations of travel demand) and defines a course of 

action for each scenario.  

 The idea of travellers employing strategies was first introduced by Chriqui 

and Robillard (1975) in regards to transit passengers choosing an optimal subset of 

routes from overlapping lines to minimize delay. Marcotte and Nguyen (1998) 

formulated an approach for capacitated transit networks using hyperpaths based 

on the probability of a link being available when a user arrives.  This approach was 

then refined by Marcotte et al (2004), the work that introduced strategic decision 

making by users in traffic assignment networks, rather than path-based route 

selection. Strategic in this context refers to the idea that users have a subset of 

possible paths from each node which are ordered by preference, depending on the 

availability of that link upon arrival at the previous node. They employ this idea in a 

capacitated network with rigid link costs. However, the availability of a given link 

depends on how many others employ a similar strategy, and is thus flow 

dependent. The objective function of this of this formulation then minimizes the 

expected delay, which is based on access probabilities at each link. The variational 

inequality formulation of this problem was solved and compared using five solution 

algorithms.  
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 Hamdouch et al (2004) expanded the previous approach into dynamic 

capacitated network. Again, users chose routes according to strategies consisting of 

a subset of possible preferred routes based on arc availability. Here congestion 

effects were represented by queuing delays and the loading strategy was based on 

preference and classes that guaranteed first in first out requirements were met. 

Again, the authors formulated the problem using a variational inequality approach 

(minimized expected delay) that was solved using a heuristic algorithm based on 

the method of successive averages.  

 While the works discussed in this section introduce the concept of strategic 

assignment, it is important to note that they use the term with a significantly 

different intent. The strategies in the above approach are based on access 

probabilities when the user reaches a certain node. The strategic concept as used 

here reflects a mixed strategy approach on behalf of users (Aumann and 

Brandenburger, 1995) and captures a higher level equilibrium of path choice. 

Additionally, the works above assume that users adopt the strategic approach to 

minimize their travel time, as opposed to the expected travel time equilibration that 

is assumed in strategic as used here. 

2.3 Model Formulations 

This section presents the qualitative description and mathematical derivations and 

formulation for the StrUE, StrSO, and StrSR models.  
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2.3.1 Strategic user equilibrium 

The StrUE model is based on the core assumption that travellers make their route 

choice based on knowledge of the day-to-day demand distribution. This knowledge 

results from past experience travelling in the network. However, on any given day 

of travel, a driver does not know what the travel conditions she will experience. 

Therefore, travellers employ a strategy to make a route choice. While this strategy 

could be given a variety of definitions, in approaches outlined in this thesis, the 

strategy is straightforward: users will choose the least expected cost path. The 

expectation of the path cost is a function of the total demand distribution (which 

users are assumed to know).  Thus, route choices are made a priori, and users are 

assumed to remain on their chosen path regardless of the travel conditions they 

experience. This is considered the first stage of the model.  

 

Figure 2:5 Summary of the strategic user equilibrium model framework 
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The modelling implications of the user behaviour in the first stage of the model are 

a mathematical equilibrium based on a fixed assignment pattern of link 

proportions. As an analogue to a Wardropian equilibrium, a strategic equilibrium 

implies the following: no user can unilaterally change routes for a lower expected 

travel time. The corollary of this statement is that no proportion of the demand on 

each path between an origin and a destination can change paths for a lower 

expected travel time on any path. However, the day-to-day travel realization 

changes according to some demand distribution. Thus, in the second stage of the 

model, link proportions remain fixed but total demand is changing, resulting in 

flows that vary reflecting disequilibrium similar to what is observed in traffic 

networks. The physical interpretation of this approach is flows that appear to be a 

disequilibrium for any given manifestation (for example, a daily demand) but are in 

fact defined by a higher level equilibrium based on the demand distribution. 

The strategic approach has two main advantages: it accounts for demand 

uncertainty, which is an improvement over deterministic models, and it quantifies 

the variance in link travel time. This variance can be interpreted as a measure of 

reliability. Furthermore, in a network design problem, the planner can consider 

link variance and variance in total system travel time as part of the decision making 

process.  

Strategic traffic assignment can be summarized by the following: 
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 Users have knowledge of the travel demand, but they do not know what the 

demand realization will be on a specific travel day; 

 Therefore, they employ a strategy in which they choose the least expected 

cost path; 

 The modelling implications of this behaviour is a mathematical equilibrium  

based on link flow proportions that remain fixed while the day to day 

demand realization is changes resulting in flow volatility. 

Consider a directed graph 𝐺 = (𝑉, 𝐴) where 𝑉 is the set of nodes (vertices) and 𝐴 is 

the set of links (edges), where an individual link is indexed by 𝑎. Let 𝑟 ∈ 𝑅 index an 

origin and 𝑠 ∈ 𝑆 index one destination from the set of destinations. Let 𝑊 be the set 

of origin-destination pairs connecting origins 𝑟 with destinations 𝑠, where 𝑞𝑟𝑠 

indicates the proportion of total demand between origin 𝑟 and destination 𝑠. The 

total demand is a random variable 𝑇 with associated probability distribution𝑔(𝑇). 

The travel cost on a link 𝑡𝑖𝑗  is a function of link flow, which is a function of the 

proportion of the total flow on the link 𝑝𝑖𝑗 and 𝑇. Furthermore let 𝐾𝑟𝑠 be the set of 

paths connecting origin 𝑟 and destination 𝑠, and let 𝑓𝑘
𝑟𝑠 represent the proportion of 

the total travel demand on that path. The StrUE model as previously introduced 

may then be written as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑧(𝑝, 𝑇) = ∫ ∑ ∫ 𝑡𝑖𝑗(𝑝𝑇)
𝑝𝑖𝑗

0(𝑖,𝑗)∈𝐴

∞

0

𝑔(𝑇)𝑑𝑝𝑑𝑇 (2.9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ 𝑓𝑘
𝑟𝑠

𝑘

= 𝑞𝑟𝑠 ∀𝑟 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆 (2.10) 
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𝑓𝑘
𝑟𝑠 ≥ 0 ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾 (2.11) 

𝑝𝑖𝑗 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑖𝑗,𝑘 

𝑟𝑠

𝑘∈𝐾𝑠∈𝑆𝑟∈𝑅

 ∀(𝑖, 𝑗) ∈ 𝐴 (2.12) 

 

To ensure uniqueness of link flows, for each origin-destination, path flow 

proportion is assumed to be equal under all demand scenarios. Therefore, each 

path will be altered proportionally when the total origin-destination demand 

varies. The system performance metrics in the strategic approach can either be 

found through analytical derivations or simulation-based sampling methods, and 

will be detailed in the next section.  

2.3.2 Strategic system optimal formulation 

This section derives the formulation for the StrSO model. In a similar manner as the 

StrUE model, the StrSO can be interpreted as a two stage model. In the first stage, 

routes are assigned to minimize expected total travel time at a system level. The 

result is a set of optimal link flow proportions that remain fixed, in the same way 

that link flow is fixed in the deterministic approach.  Then in the second stage of the 

model interpretation, travel conditions manifest and system performance metrics 

can be derived. 

 Strategic system optimal (StrSO) assignment is an analogue to the system 

optimum in traditional user equilibrium, where users are routed according to a 
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strategy to minimize total system travel time. StrSO represents the lower bound on 

network performance. Additionally, StrSO proportions are a component of the 

calculation of strategic marginal social cost-based tolls, which is the topic of 

Chapter 4. 

 For a system optimal mathematical program, the objective is to minimize 

total travel time. In the deterministic case, the total travel time (TSTT) is a 

straightforward calculation of the travel cost on each link 𝑡𝑖𝑗(𝑥), multipled by the 

flow on the link that experiences that travel cost 𝑥𝑖𝑗 . 

𝑇𝑆𝑇𝑇𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 =  ∑ 𝑥𝑖𝑗𝑡𝑖𝑗(𝑥)

(𝑖,𝑗)∈𝐴

 (2.13) 

However, in the strategic case the flow on each link is defined as a proportion of the 

total system trips T, where the random variable 𝑇 has a probability distribution 

defined as 𝑔(𝑇),  as discussed in the previous section. 

𝑥𝑖𝑗 = 𝑝𝑖𝑗𝑇 →  𝑝𝑖𝑗 = 𝛿𝑖𝑗,𝑘
𝑟𝑠 𝑓𝑟𝑠: ∑ 𝑓𝑘

𝑟𝑠 = 1

k∈K𝑟𝑠

 (2.14) 

Therefore, applying the same approach as Equation 3.1 will result in a calculation 

for the total travel time for any specific random variable 𝑇, not the expectation of 

the total system travel time. 

𝑇𝑆𝑇𝑇(𝑇) =  ∑ 𝑝𝑖𝑗𝑇 (𝑡𝑖𝑗(𝑥))

(𝑖,𝑗)∈𝐴

  (2.15) 
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The StrSO approach seeks to minimize the expected total system travel time, 𝐸. The 

expected value of a random variable is defined as the integral of the random 

variable with respect to its probability measure. If 𝑋 is a random variable defined in 

probability space, consisting of a sample space Ω, a set of events Σ, and a set of 

probabilities associated mapped to events 𝑃, then the expected value of 𝑋 is 

defined as: 

𝐸[𝑋] =  ∫ 𝑋𝑑𝑃 = ∫ 𝑋(𝜌)𝑃(𝑑𝜌)
ΩΩ

  (2.16) 

When this integral exists, it defines the expectation of X. This property supports the 

expectation of the random variable for total trips as: 

𝐸[𝑇] =  ∫ 𝑇𝑔(𝑇)
+∞

0

= 𝑀1  (2.17) 

The total system travel time is a function of the link cost functions, which is a 

function of link proportion and total trips. However, the expectation of a 

measurable function of T, such as the TSTT, where the probability density function 

is 𝑔(𝑇), the following property holds true (citation).  

𝐸[𝑔(𝑇)] =  ∫ 𝑤(𝑇)𝑔(𝑇)𝑑𝑇
+∞

−∞

  (2.18) 

Link costs are defined as a function of link proportion and total trips. The total 

travel time is calculated using the expectation of the total cost on each link 

𝜙𝑖𝑗(𝑝, 𝑇). Using Equation 3.9, the total cost on each link may be defined as: 
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𝐸[𝜙𝑖𝑗(𝑝, 𝑇)] =  ∫ 𝑝𝑖𝑗𝑡(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇
∞

0

 (2.19) 

In the case of StrSO, the sample space is defined by the non-negative travel demand 

realization. The probability measure is the continuous probability density function 

describing the total travel demand 𝑔(𝑇). However, the expectation of total system 

travel time is the expectation of a function, not a random variable. The expectation 

of total system travel time is the expectation of a function, which is treated by the 

property in Equation 3.10. Therefore, the expectation of total system travel time 

may be defined as follows. 

𝐸 = 𝐸𝑥𝑝 ( ∑ 𝜙𝑖𝑗(𝑝, 𝑇)

(𝑖,𝑗)∈𝐴

) =  ∑ ∫ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇
∞

0(𝑖,𝑗)∈𝐴

=  ∫ ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

∞

0

 

(2.20) 

The constraints to define the strategic solution space are the same in the StrSO 

program as in the StrUE program. Therefore, the mathematical program to define 

the StrSO flows, where the objective function is to minimize total travel time and 

the decision variables are path proportion 𝑓𝑟𝑠
𝑘  and link proportions 𝑝𝑖𝑗, is defined in 

Equations (2.21) - (2.24). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐸(𝑝, 𝑇) =  ∫ ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

∞

0

 (2.21) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   
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∑ 𝑓𝑘
𝑟𝑠

𝑘

= 𝑞𝑟𝑠 ∀𝑟 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆 (2.22) 

𝑓𝑘
𝑟𝑠 ≥ 0 ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾 (2.23) 

𝑝𝑖𝑗 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑖𝑗,𝑘 

𝑟𝑠

𝑘∈𝐾𝑠∈𝑆𝑟∈𝑅

 ∀(𝑖, 𝑗) ∈ 𝐴 
(2.24) 

Similar to the StrUE formulation, the formulation for StrSO is relatively 

straightforward, but useful. This program accounts for day-to-day uncertainty and 

can be scaled up for practical problems. As an additional note, the general 

formulation presented here needs an explicit definition for the travel cost function 

in order to become tractable and yield useful solutions. These assumptions will be 

the topic of Section 2.4. 

2.3.3 Strategic system reliable formulation 

Reliability is an increasingly important consideration for transport planners. 

Numerous works have shown the influence of travel time variability on traveller 

route choice (Asensio & Matas, 2008; Roughan et al, 2002; Senna, 1994). System 

variance represents a possible measurement of reliability that is not possible in a 

traditional traffic assignment approach. Strategic system reliable (StrSR) 

assignment represents a lower bound on the system variance of the road network 

performance. This powerful concept results from the strategic framework of the 
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assignment models proposed in this work, in which the day-to-day travel demand 

is assumed to follow a known distribution. 

 The strategic system reliable model assigns routes so as to minimize the 

variance of the total system travel time. The variance of a set measures how 

“spread out” the members of that set are. In a set consisting of system travel time 

realizations, the variance quantifies how much the total travel time deviates from 

the expected value. The variance of a continuous random variable 𝑋 is defined as: 

𝑉[𝑋] = 𝐸𝑥𝑝((𝐸 − 𝜇)2) =  ∫ (𝑋 − 𝜇)2𝑓(𝑇)𝑑𝑇
+∞

−∞

 (2.25) 

Where 𝜇 is the mean of the probability distribution. If X is a real valued random 

variable defined on Ω, it is more common to define the variance as: 

𝑉[𝑋] = 𝐸(𝑋2) − 𝜇2 (2.26) 

The variance of total system travel time is then defined as the square of the 

summation of the total link travel time on all links. 

𝑉[𝐸(𝑝, 𝑇)] = 𝐸𝑥𝑝 (( ∑ 𝜙𝑖𝑗(𝑝, 𝑇)

(𝑖,𝑗)∈𝐴

)

2

) − 𝐸𝑥𝑝 ( ∑ 𝜙𝑖𝑗(𝑝, 𝑇)

(𝑖,𝑗)∈𝐴

)

2

 (2.27) 

Which may be rewritten as: 

𝑉[𝐸(𝑝, 𝑇)] = (∫ ( ∑ 𝜙𝑖𝑗(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

)

2
∞

0

 ) − (∫ ∑ 𝜙𝑖𝑗(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

∞

0

)

2

 (2.28) 
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The StrSR mathematical program is presented in Equations (2.29) - (2.31). The 

objective is to minimize the variance (which is identical to minimizing the standard 

deviation) of total travel time, as defined in Equation (3.20). The decision variables 

are 𝑓𝑟𝑠
𝑘  which is the proportion of the total flow on each path for each OD pair and 

𝑝𝑖𝑗 the proportion of the total flow on each link. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑉[𝐸(𝑝, 𝑇)] (2.29) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ 𝑓𝑘
𝑟𝑠

𝑘

= 𝑞𝑟𝑠 ∀𝑟 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆 (2.30) 

𝑓𝑘
𝑟𝑠 ≥ 0 ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾 (2.31) 

𝑝𝑖𝑗 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑖𝑗,𝑘 

𝑟𝑠

𝑘∈𝐾𝑠∈𝑆𝑟∈𝑅

 ∀(𝑖, 𝑗) ∈ 𝐴 (2.32) 

 

The next section discusses the assumptions and model performance metrics. 

2.4 Model assumptions and performance metrics 

As with all models, a number of assumptions are necessary in order to provide a 

method that can be solved and therefore analysed. The assumptions in this work 

are intended to provide analytical expressions, and furthermore, facilitate the 

application of the proposed framework to practically sized problems. In addition, 



 

 

41 

 

model performance metrics are the tool that measures model performance, an 

essential component of any modeling framework. Therefore, this section also 

defines and derives the strategic model performance metrics, which will then be 

demonstrated in the section containing the experimental results. 

2.4.1 Strategic modelling assumptions 

In order to solve the strategic assignment model, it is necessary to make an 

assumption regarding the distribution of the demand. This work assumes the 

demand follows a lognormal distribution, a continuous probability distribution 

where the logarithm of the random variable is normally distributed. A lognormal 

distribution is common distribution that has been found to be a good description of 

many natural growth processes, such as growth of living tissue, extreme values of 

rainfall data, and also in disciplines such as economics and finance. A number of 

previous works have also utilized the assumption of a lognormal demand 

distribution (Zhao & Kockelman, 2002; Zhou & Chen, 2008).  An additional benefit 

of assuming a lognormal distribution for the travel demand is that the higher level 

moments of a lognormal distribution have a closed form solution: 

𝑀𝛽 = 𝑒𝛽𝜇+
1
2

𝛽2𝜎2

 (2.33) 

Therefore, this work assumes a lognormal distribution for the total travel demand 

with random variable 𝑇~𝐿𝑁(𝐸𝑠𝑡𝑟 , 𝐶𝑉𝑠𝑡𝑟), where 𝐸𝑆𝑡𝑟  is the total expected demand, 

the 𝐶𝑉𝑠𝑡𝑟is the coefficient of variation of total trips, where: 
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𝐶𝑉𝑠𝑡𝑟 =
𝜎𝑠𝑡𝑟

𝐸𝑠𝑡𝑟
 (2.34) 

The OD demand is assumed to be perfectly correlated, and therefore follows fixed, 

specified proportions. As discussed previously, this assumption is necessary to 

ensure uniqueness of link flows, which further ensures the uniqueness of the 

objective function. An interpretation to support this assumption may be weather 

conditions that affect the network as a whole. This assumption leads to a tractable 

model formulation and the ability for the model to be applied to practically sized 

problems; however, future work will investigate modelling for situations in which 

the demand is not perfectly correlated. 

  Travellers make their route choices based on knowledge of the distribution 

and the resulting expected travel costs.  In order to solve the StrUE, StrSO, and 

StrSR models, a closed form assumption for the travel cost function is necessary. In 

transport planning, it is common to assume that the travel time on a link varies as a 

polynomial function of the ratio between the flow on the link and the capacity on 

the link. The lower bound on the travel cost is a free-flow travel time that is often 

considered to be a “middle of the night” travel when there are very few vehicles, or 

simply the length of a road segment divided by the posted speed limit. This work 

applies a variation of the BPR function; travel time 𝑡𝑖𝑗  is assumed to be a function of 

link flow proportion 𝑝𝑖𝑗  and the random variable for total demand 𝑇: 
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𝑡𝑖𝑗(𝑝, 𝑇) = 𝑡𝑖𝑗
𝑓

(1 + 𝛼 (
𝑝𝑖𝑗𝑇

𝑐𝑖𝑗
)

𝛽

) (2.35) 

Where 𝑡𝑖𝑗
𝑓

 is the free flow travel time on link (𝑖, 𝑗), 𝑐𝑖𝑗 is the capacity, 𝛼 and 𝛽 are 

BPR shaping parameters that are commonly assumed to be 0.15 and 4, 

respectively. For simplicity, this work assumes that the 𝛼 and 𝛽 parameters in the 

BPR function are the same on every link. The flow proportion on each link 𝑝𝑖𝑗is an 

output from solving the StrUE model.  

 The assumptions made in the strategic modelling approach are summarized 

by the following: 

 The total demand can be described by a lognormal distribution;

 The demand for all origin destination pairs is perfectly correlated;

 The travel cost can be described by the BPR function;

 Link cost functions are independent and therefore their co-variances are 

equal to zero.

2.4.2 Link level performance metrics 

The strategic approach includes two methods for calculating all performance 

metrics. The first is to use analytical equations, which is possible due to the 

assumption of lognormal demand discussed in the previous section. The second 

method is to use a simulation-based approach that will be described in Section 2.5. 

The use of two methods is useful as a form of verification. Additionally, the 
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simulation method may be necessary for cases in which the analytical solutions 

don’t exist. In this work, " ⋄ " implies that a quantity is analytically derived, while 

"⨀" indicates that the quantity was found through simulation, which will be 

detailed in Section 2.5. This section introduces the expected link travel time ⋄ 𝐸𝑖𝑗  

and link standard deviation of travel time ⋄ 𝑆𝑖𝑗. 

The StrUE model assumes that users will choose the expected shortest cost 

path, with the path cost is additive of the cost of each link comprising the path.  The 

expected link cost ⋄ 𝐸𝑖𝑗  can be derived as follows. 

⋄ 𝐸𝑖𝑗(𝑝, 𝑇) = ∫ 𝑡𝑖𝑗(𝑝𝑇)𝑔(𝑇)𝑑𝑇

∞

0

= 𝑡𝑖𝑗
𝑓

(1 + 𝛼 (
𝑝𝑖𝑗

𝑐𝑖𝑗
)

𝛽

𝑀𝛽) (2.36) 

Where 𝑀 is the analytical moment of the demand distribution that is found as in 

Equation (2.33). One of the advantages of the strategic approach is that it provides 

a closed form expression to quantify the variance of a link. Equation (2.26) shows 

the general calculation for the variance of a quantity. Combining Equations (2.26) 

and (2.36), an expression for the variance of a link ⋄ 𝑉𝑖𝑗 can be derived. 

⋄ 𝑉𝑖𝑗 = ∫ 𝑡𝑖𝑗
𝑓

(1 + 𝛼 (
𝑝𝑖𝑗𝑇

𝑐𝑖𝑗
)

𝛽

)

2

𝑔(𝑇)𝑑𝑇
∞

0

− (∫ 𝑡𝑖𝑗
𝑓

(1 + 𝛼 (
𝑝𝑖𝑗𝑇

𝑐𝑖𝑗
)

𝛽

)
∞

0

𝑔(𝑇)𝑑𝑇)

2

 

(2.37) 

⋄ 𝑉𝑖𝑗 =
𝑡𝑖𝑗

𝑓2
𝛼2

𝑐𝑖𝑗
2𝛽

(𝑀2𝛽 − 𝑀𝛽
2)𝑝𝑖𝑗

2𝛽
 (2.38) 
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⋄ 𝑆𝑖𝑗  = √⋄ 𝑉𝑖𝑗 (2.39) 

The next section describes the system level performance metrics. 

2.4.3 System level performance metrics 

This section presents the derivation and calculation of expected total system travel 

time ⋄ 𝐸, the primary metric of interest for planners in particular, and the standard 

deviation of total system travel time, ⋄ 𝑆. More about why these are important. 

The expected total system travel time can be calculated by combining Equations 

(2.20)and (2.36). 

⋄ 𝐸 =  ∑ (𝑡𝑖𝑗
𝑓

𝑝𝑖𝑗𝑀1 + (
𝛼𝑡𝑖𝑗

𝑓

𝑐𝑖𝑗
𝛽

) 𝑝𝑖𝑗
𝛽+1

𝑀𝛽+1)

(𝑖,𝑗)∈𝐴

 (2.40) 

In order to aid with the presentation of system performance metrics, consider the 

two parts of total system travel time as that resulting from sum of the free flow 

travel time on each link, 𝐹, and that resulting from the sum of the delays on each 

link, 𝐷. 

𝐹 = ∑ 𝑡𝑖𝑗
𝑓

𝑝𝑖𝑗

(𝑖,𝑗)∈𝐴

 (2.41) 

𝐷 = ∑ (
𝛼𝑡𝑖𝑗

𝑓

𝑐𝑖𝑗
𝛽

)

(𝑖,𝑗)∈𝐴

𝑝𝑖𝑗
𝛽+1

 (2.42) 

Using this notation, the expected total system travel time can then be written as:  
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⋄ 𝐸 =  𝐹𝑀1 + 𝐷𝑀𝛽+1 (2.43) 

The standard deviation is more complex because we need to find the expectation of 

the sum of link travel times squared with respect to the total demand 𝑇. However, 

assuming that 𝑇 is not link-dependent (implying that the power of 𝛽 is the same on 

all links), then the total trips 𝑇 can be factored out. Thus, the standard deviation 

can be calculated by finding 𝐹 and D as a summation of values from each link, and 

then computing the final expression presented in Equation . 

𝑉[⋄ 𝐸] = 𝐹2𝑀2 + 𝐷2𝑀2𝛽+2 + 2𝐹𝐷𝑀𝛽+2 − (𝐹𝑀1 + 𝐷𝑀𝛽+1)
2

 (2.44) 

⋄ 𝑆 = √𝑉[⋄ 𝐸] (2.45) 

While ⋄ 𝑆 is somewhat nonstandard, it can still be calculated relatively easily using 

a single pass through the array of links.  

2.5 Solution methodology 

In order to scale the StrSO and StrSR models to a larger network, an algorithm 

based on the Frank Wolfe algorithm was developed, where the link costs are the 

gradient of the objective function, once again assuming the BPR function to 

describe link costs and that the demand fits a lognormal distribution. The link cost 

functions are convex, continuous, and strictly increasing with a symmetric Jacobian, 

and thus we can prove the Hessian is positive definite and the solution is unique.  
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 Practical applications of user equilibrium models present a number of 

challenges, including collecting the appropriate field data (geometric network data, 

road speeds and capacities), preparing model inputs (i.e., interface between data 

and model), model calibration and validation of model output, the computational 

challenges of large scale problems, and interpreting and analysing model output. 

Research on computation methods to provide precise equilibrium flows has been 

an active topic for many decades. Some examples include the path-based gradient 

project method by Jayakrishnan et al (1994), the origin-based algorithm  (Bar-Gera, 

2002),  Dial’s bush-based Algorithm B (Dial, 2006; Nie, 2010), the bush-based local 

cost user equilibrium (Gentile, 2014), and the traffic assignment by alternative 

paired segments (TAPAS) algorithm (Bar-Gera, 2010). However, the Frank Wolfe 

method (Leblanc et al, 1975) remains one of the most popular approaches to 

solving the user equilibrium problem due to its straightforward implementation 

and low memory requirements. An adapted Frank Wolfe approach is implemented 

here; however, there are well-acknowledged issues relating to the convergence of 

the Frank Wolfe method that are discussed below. For practical planning issues 

that may the determinant of multi-million dollar projects, a more precise solution 

approach is recommended (although Frank Wolfe is still used in practice). 

 The Frank Wolfe method is a convex combination algorithm that considers 

the linear approximation of an objective function (Frank & Wolfe, 1956). Frank 

Wolfe is an iterative procedure consisting of two primary steps: minimize a 

linearised subproblem to find the decent direction, and then determining the 
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optimal stepsize to minimize a convex combination of the current solution. The 

objective function must be convex and differentiable. As previously mentioned, the 

Frank Wolfe approach is well-established as a means to solve the user equilibrium 

mathematical program, where the linear subproblem of the objective function is 

the shortest path problem. 

 The subproblem for the StrUE problem is the expected cost function. The 

subproblem of the StrSO and StrSR models are the gradient of the expected total 

system travel time and variance of total system travel time with respect to each link 

𝑝𝑖𝑗, respectively.  

 The gradient of ⋄ 𝐸 is relatively simple to find for each link and represented 

the expected marginal cost function, contained in Equation (2.47). 

∇(⋄ 𝐸) =
𝜕

𝜕𝑝
( ∑ (𝑡𝑖𝑗

𝑓
𝑝𝑖𝑗𝑀1 + (

𝛼𝑡𝑖𝑗
𝑓

𝑐𝑖𝑗
𝛽

) 𝑝𝑖𝑗
𝛽+1

𝑀𝛽+1)
(𝑖,𝑗)∈𝐴

) (2.46) 

∇(⋄ 𝐸) = ∑ (𝑡𝑖𝑗
𝑓

𝑀1 + (
𝛼𝑡𝑖𝑗

𝑓

𝑐𝑖𝑗
𝛽

) 𝑝𝑖𝑗
𝛽

𝑀𝛽+1)
(𝑖,𝑗)∈𝐴

 (2.47) 

In order to solve the StrSR model, the linearized subproblem of the Frank Wolfe 

method represents the marginal reliability function, which is calculated as the 

gradient of the StrSR objective (the system variance) with respect to the link 

proportion variable (the decision variable in the Frank Wolfe method). The general 

function is shown in Equation (2.48). 
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∇(⋄ 𝑆) =
𝜕

𝜕𝑝
(𝐹2𝑀2 + 𝐷2𝑀2𝛽+2 + 2𝐹𝐷𝑀𝛽+2 − (𝐹𝑀1 + 𝐷𝑀𝛽+1)

2
) (2.48) 

Where the summations 𝐹 and 𝐷 are both functions of functions of 𝑝𝑖𝑗. The gradient 

of the system variance requires the use of the chain rule. For two generic functions 

𝑓(𝑥) and 𝑔(𝑥), the chain rules states: 

𝑓(𝑔(𝑥)) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥) (2.49) 

In the case of the marginal reliability function, the inner function of 𝑝𝑖𝑗 is the travel 

cost function. The partial derivative of the travel cost function is displayed in 

Equation (2.50). 

𝜕

𝜕𝑝𝑖𝑗
𝑡𝑖𝑗(𝑝, 𝑇) = 𝑡𝑖𝑗

𝑓 𝛼(𝛽 + 1)

𝑐𝑖𝑗
𝛽

𝑝𝛽 (2.50) 

Finally, Equations (2.48), (2.49), and (2.50) can be combined  

∇(⋄ 𝑆) =  2𝐹𝑀2𝑡𝑖𝑗
𝑡 + 2𝑀2𝛽+2𝐷 (

𝜕

𝜕𝑝𝑖𝑗
𝑡𝑖𝑗)

+ 2𝑀𝛽+2 (𝑡𝑖𝑗
𝑓

𝐷 + 𝐹 (
𝜕

𝜕𝑝𝑖𝑗
𝑡𝑖𝑗))

− 2(𝑀1𝐹 + 𝑀𝛽+1𝐷) (𝑀1𝑡𝑖𝑗
𝑓

+ 𝑀𝛽+1 (
𝜕

𝜕𝑝𝑖𝑗
𝑡𝑖𝑗)) 

(2.51) 

While this expression looks prohibitively complex, it can still can calculated by 

passing through an array of links only twice. The first computation is to sum the 𝐹 

and the 𝐷 terms. On the second time pass through the array, the gradient with 

respect to 𝑝𝑖𝑗is saved as the “cost” of the link. 
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 The approach for solving the strategic models is described in Algorithm 2.1. 

A note about the pseudo-code of the algorithms in this work: the solution methods 

in this thesis were programmed by the author using the object oriented C++ 

programming language. Thus the general programming paradigm is influenced by 

C++ standard guides ("Google C++ Style Guide," ). Of course, reproducing C++ code 

for an illustrative algorithm is both tedious and unnecessary; however, the general 

approach of the pseudo-algorithms is intended to be functional and clear, but 

grounded in C++ paradigm. Functions that are intended to be “called” (and 

therefore linked to other functions) are named using the underscore, “_”, i.e., 

solve_strategic_model() refers to Algorithm 2.1. In some places, just a short 

description is provided, as opposed to a detailed function. For example, Algorithm 

2.1 does not include the code for the shortest path algorithm, which is a rich field of 

research unto itself. See Ahuja et al (1993) for more details. For clarity, details such 

as declaring variables and vectors are also excluded from the pseudo-algorithms. 
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Algorithm 2.1: Solve the strategic model pseudocode 

INPUT: Network 𝐺 = (𝑁, 𝐴); 𝑔(𝐸𝑆, 𝐶𝑉𝑆); 

 procedure solve_strategic(TYPE) 

1:  𝐾𝑟𝑠
∗ ← find shortest paths using free flow costs; 

2:  while (update_relative_gap(𝑝, 𝑝∗, 𝑐) > 0.0001) 

3:  //update proportion assignment 

4:  for (𝑖, 𝑗) ∈ 𝐴 do 

5:  𝑝𝑖𝑗 ← 𝑝𝑖𝑗 + 𝜆(𝑝𝑖𝑗
∗ − 𝑝𝑖𝑗); 

6:  end for 

7:  update costs for TYPE; 

8:  //find shortest path given new costs  

9:  for (𝑟 ∈ 𝑅) do 

10:  find shortest path matrix for 𝑟;  

11:  for (𝑠 ∈ 𝑆: 𝑟𝑠 ∈ 𝑊) do 

12:  find 𝑘𝑟𝑠
∗ ;  

13:  for (𝑖, 𝑗) ∈ 𝑘𝑟𝑠
∗  do 

14:  𝑝𝑖𝑗
∗ += 𝑞𝑟𝑠; 

15:  end for 

16:  end for 

17:  end for 

18:  𝜆 ←minimize objective function(TYPE) 

19:  end while 

20:  calculate performance metrics; 

 end procedure 

OUTPUT:⋄ 𝐸; ⋄ 𝑆; ⨀𝐸; ⨀𝑆; 𝑝𝑖𝑗∀(𝑖, 𝑗) ∈ 𝐴;  

 

Note that a "relative gap" inspired termination criteria was selected, which 

measures how far the network is from equilibrium flows, i.e., the difference in the 

path costs. The relative gap is calculated as the difference between the cost of the 

“all or nothing” path assignment and the cost of the current link flows, outlined in 

Algorithm 2.2. 
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Algorithm 2.2: Solve the strategic model pseudocode 

 sub-procedure update relative gap(𝑝, 𝑝∗, 𝑐) 

1:  for (𝑖, 𝑗) ∈ 𝐴 do 

2:  𝐸∗+= 𝑝𝑖𝑗
∗ ∗ 𝑐𝑖𝑗 

3:  𝐸+= 𝑝𝑖𝑗𝑐𝑖𝑗 

4:  end for 

5:  return (𝐸∗ − 𝐸)/𝐸; 

 end sub-procedure 

 

As with other demand scenario based approaches, if the probability distribution of 

the total demand is unknown, a simulation method could be used to solve the 

model. In the case presented in this thesis, it is assumed that the total travel 

demand follows a lognormal distribution, and therefore the travel cost, objective 

functions, and system performance measures have analytical solutions, presented 

in the previous section. However, a simulation-based method is still useful for 

testing and for the purposes of verification. An example of the simulation method 

employed in this work is presented in Algorithm 2.3. Given the equilibrium 

proportions that are output from solving the strategic model, the expected total 

system travel time and the standard deviation of total travel time can be 

determined by sampling a random variable for total trips from the strategic 

demand distribution using a Monte Carlo based approach, and then calculating the 

appropriate performance metrics from the samples. 
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Algorithm 2.3: Solve the strategic model pseudocode 

INPUT: 𝐴; 𝑔(𝐸𝑠, 𝐶𝑉𝑠); 𝑝𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐴; 𝑁 demand samples 

 procedure simulation 

1:  𝐸 = running average of system travel time 

2:  for i = [1…N] do 

3:  sample_trips ← random sample from 𝑔(𝐸𝑠, 𝐶𝑉𝑠); 

4:  for (𝑖, 𝑗) ∈ 𝐴 do 

5:    𝑇𝑆𝑇𝑇 += 𝑡𝑖𝑗
𝑓

∗ (1 + 𝛼 ∗ 𝑝𝑜𝑤(𝑝𝑖𝑗 ∗ 𝑠𝑎𝑚𝑝𝑙𝑒_𝑡𝑟𝑖𝑝𝑠/𝑐𝑖𝑗, 𝛽)) ; 

6:  end for 

7:  𝐸 ← 𝐸 ∪ 𝑇𝑆𝑇𝑇 

8:  end for 

9:  ⨀𝐸 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐸) 

10:  ⨀𝑆 ← 𝑠𝑡𝑑(𝐸) 

 end procedure 

OUTPUT: ⨀𝐸, ⨀𝑆 

 

Note that the Simulation Sub-Procedure can be easily adapted to StrUE, StrSO, and 

StrSR by using the correct strategic proportions as input. Further note that all 

sampling results (e.g., ⨀𝐸, ⨀𝑆𝑇𝐷) can be calculated as “running” averages to 

prevent unnecessary memory storage and computation time. 

 Combining the algorithms above, the strategic models can be solved and 

analysed. The next section presents results for each model on a variety of test 

networks. 

2.6 Demonstration of results 

The preceding sections outlined the concept, formulation, assumptions, and 

solution method for the StrUE, StrSO, and StrSR models. This section discusses the 

implementation of the models on four test networks of varying size and discusses 
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the implications of the model in regards to system level and link level performance 

metrics. 

2.6.1 Description of test networks 

The StrUE, StrSO, and StrSR models were tested on four networks. The first 

network was based on the Nguyen Dupius network, a small sized test network that 

is common in transport test problems. The Nguyen Dupius network consists of 13 

nodes, 19 links, 2 origins, and 2 destinations. The capacity on all links is 2,200, and 

it is considered a congested network. The Nguyen Dupius network is useful for 

demonstration and test purposes; however, it is not large enough to capture 

significant effects of route choice. The Nguyen Dupius network is shown in Figure 

2:6. Table 2-2 contains a summary of the data for the demonstration networks in 

this chapter. 

Table 2-2 Summary of demonstration network 

 
Nguyen 
Dupius 

Sioux 
Falls 

Anaheim 
Gold 
Coast 

nodes 13 24 416 4054 
links 19 76 914 9565 

zones 4 24 38 1067 

E(T) 6,265 360,000 106,076 121,921 
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Figure 2:6  The Nguyen-Dupius network. 

 The second network of interest is the ubiquitous Sioux Falls network, which 

is commonly treated as a sort of benchmark case in the transport modelling 

community. This is likely due to the grid-based nature of the network. While the 

use of the Sioux Falls network (based on the same network data) is useful to create 

rough comparisons between different methods, it is not considered a realistic 

representation of Sioux Falls, South Dakota, USA. Figure 2:7 shows the Sioux Falls 

grid network that is used as a test problem, and the real Sioux Falls network in 

2014 (from OpenStreetMaps). 
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Figure 2:7 (a) Sioux Falls test network and (b) real Sioux Falls network (2014, 

OpenStreetMaps) 

The third network is the Anaheim network, also a relatively common network in 

transportation test problems. The data roughly approximates the area, based on 

planning data from 1992. Given that Anaheim is located in the heart of Los Angeles, 

the basic infrastructure has probably not seen dramatic changes in the last twenty 

years, but of course, the network is not intended as realistic in this work. 
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Figure 2:8 (a) Anaheim test network, and (b) real Anaheim network (2014, 

OpenStreetMaps) 

Finally, this thesis presents the strategic modelling results on the Gold Coast 

network. The data for this network came from Bar-Gera, who reports that the data 

was provided by Veitch Lister Consultancy in Brisbane, Australia. The Gold Coast 

network is the largest demonstration network in this thesis, with 4054 nodes, 9565 

links, and 1067 zones. While this is a realistic sized network, regional planning 

networks can become significantly larger (for example, the Sydney, Australia 

planning network has about 80,000 links and 3,000 zones). 
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Figure 2:9 Gold Coast, Queensland, Australia (2014 OpenStreetMaps) 

2.6.2 Comparing Analytic and Simulation Results 

This section compares the results from the analytic method (Figure X) and the 

simulation based method. This comparison serves a dual purpose; firstly, 

convergence of analytical and simulation results is a simple check for the 

elimination of human error. Secondly, for alternate strategic approaches in which a 

distribution is not known, it would be possible to solve the strategic model using 

the simulation approach alone. This section validates the convergence of analytical 

and simulation results. 
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2.6.3 System-Level Model Results 

This section presents the model results on the Sioux Falls, Anaheim, and Gold Coast 

networks. First the overall results for each network are presented 

comprehensively. Then, the data is compared and analysed in a more relatable way. 

 Table 2-3 presents the StrUE model results on the Sioux Falls network, 

where the coefficient of variation of the total travel demand 𝐶𝑉𝑠𝑡𝑟 varies from 

0 ≤ 𝐶𝑉𝑠𝑡𝑟 ≤ 0.85. Table 2-3 contains the four system performance metrics: 

⋄ 𝐸𝑠𝑡𝑟𝑢𝑒 ,⋄ 𝑆𝑆𝑡𝑟𝑈𝐸 , ⨀𝐸𝑆𝑡𝑟𝑈𝐸 , ⨀𝑆𝑆𝑡𝑟𝑈𝐸 . Note that the number of simulation samples 

𝑁 = 200,000. This ensures that the convergence between the analytical and 

simulation results is acceptable. 

The deterministic case is included in the first row of  Table 2-3, where 

𝐶𝑉𝑠𝑡𝑟 = 0. When day-to-day demand uncertainty is included in the model, the 

prediction of system metrics is higher in every case. The change in performance 

metrics is generally nonlinear with accordance to the travel cost function. When 

𝐶𝑉𝑠𝑡𝑟 > 0.25, the ⋄ 𝑆𝑇𝐷 was greater than ⋄ 𝐸. As 𝐶𝑉𝑠𝑡𝑟 increases, the ⋄ 𝑆 increases 

very dramatically. This suggests that the best application for the StrUE model may 

be networks where the 𝐶𝑉𝑠𝑡𝑟 < 0.5. 
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Table 2-3 Overall Sioux Falls results: StrUE 

𝐶𝑉𝑠𝑡𝑟 ⋄ 𝐸𝑆𝑡𝑟𝑈𝐸  ⋄ 𝑆𝑆𝑡𝑟𝑈𝐸  ⨀𝐸𝑆𝑡𝑟𝑈𝐸  ⨀𝑆𝑆𝑡𝑟𝑈𝐸  

0.00 7.48E+06 0 7.48E+06 0 

0.05 7.57E+06 1.22E+06 7.57E+06 1.22E+06 

0.10 7.86E+06 2.69E+06 7.87E+06 2.69E+06 

0.15 8.38E+06 4.74E+06 8.38E+06 4.75E+06 

0.20 9.23E+06 8.04E+06 9.24E+06 7.96E+06 

0.25 1.05E+07 1.39E+07 1.05E+07 1.40E+07 

0.30 1.25E+07 2.55E+07 1.25E+07 2.68E+07 

0.35 1.54E+07 4.96E+07 1.55E+07 5.23E+07 

0.40 1.98E+07 1.03E+08 1.98E+07 9.72E+07 

0.45 2.67E+07 2.31E+08 2.69E+07 1.93E+08 

0.50 3.74E+07 5.50E+08 3.60E+07 3.02E+08 

0.55 5.45E+07 1.39E+09 5.10E+07 7.51E+08 

0.60 8.19E+07 3.66E+09 8.08E+07 1.61E+09 

0.65 1.26E+08 1.00E+10 1.16E+08 2.11E+09 

0.70 1.98E+08 2.85E+10 1.96E+08 6.48E+09 

0.75 3.17E+08 8.28E+10 2.84E+08 9.11E+09 

0.80 5.11E+08 2.46E+11 4.61E+08 1.76E+10 

0.85 8.33E+08 7.43E+11 1.27E+09 3.13E+11 

 

Table 2-4 contains the overall results for the StrSO model and sensitivity analysis 

based on the 𝐶𝑉𝑠𝑡𝑟 . The StrSO model is the lower bound on the StrUE model, so as 

expected, all performance metrics are reduced. 

Table 2-4 Overall Sioux Falls results: StrSO 
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𝐶𝑉𝑠𝑡𝑟  ⋄ 𝐸𝑆𝑡𝑟𝑆𝑂  ⋄ 𝑆𝑆𝑡𝑟𝑆𝑂 ⨀𝐸𝑆𝑡𝑟𝑆𝑂  ⨀𝑆𝑆𝑡𝑟𝑆𝑂 

0.00 7.20E+06 0 7.20E+06 0 

0.05 7.29E+06 1.12E+06 7.29E+06 1.12E+06 

0.10 7.57E+06 2.47E+06 7.58E+06 2.48E+06 

0.15 8.10E+06 4.39E+06 8.11E+06 4.42E+06 

0.20 8.93E+06 7.52E+06 8.93E+06 7.42E+06 

0.25 1.02E+07 1.32E+07 1.03E+07 1.36E+07 

0.30 1.21E+07 2.43E+07 1.20E+07 2.36E+07 

0.35 1.51E+07 4.79E+07 1.52E+07 6.14E+07 

0.40 1.95E+07 1.01E+08 1.95E+07 8.77E+07 

0.45 2.64E+07 2.28E+08 2.67E+07 1.97E+08 

0.50 3.72E+07 5.46E+08 3.86E+07 4.45E+08 

0.55 5.43E+07 1.38E+09 5.42E+07 8.81E+08 

0.60 8.17E+07 3.64E+09 8.70E+07 1.94E+09 

0.65 1.26E+08 1.00E+10 1.15E+08 2.53E+09 

0.70 1.98E+08 2.84E+10 1.95E+08 1.12E+10 

0.75 3.16E+08 8.28E+10 2.66E+08 8.50E+09 

0.80 5.11E+08 2.46E+11 4.23E+08 1.58E+10 

0.85 8.33E+08 7.42E+11 6.81E+08 2.76E+10 

 

Table 2-5 displays the results for the four performance metrics under the 

sensitivity analysis experiment, in which 𝐶𝑉𝑠𝑡𝑟 varies between 0.05 ≤ 𝐶𝑉𝑠𝑡𝑟 ≤ 0.7, 

for the StrSR model. The case in which 𝐶𝑉𝑠𝑡𝑟 = 0 is not feasible in the case of the 

StrSR model. Additionally, the cases in which the 𝐶𝑉𝑠𝑡𝑟 > 0.7 were judged to show 

unrealistic amounts of variability (as seen in Table 2-3 and Table 2-4) and so were 

not included in the tabular results. 
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Table 2-5 Overall Sioux Falls results: StrSR 

𝐶𝑉𝑠𝑡𝑟  ⋄ 𝐸𝑆𝑡𝑟𝑆𝑅  ⋄ 𝑆𝑆𝑡𝑟𝑆𝑅 ⨀𝐸𝑆𝑡𝑟𝑆𝑂   ⨀𝑆𝑆𝑡𝑟𝑆𝑂 

0.05 7.30E+06 1117150 7.31E+06 1120140 

0.10 7.59E+06 2.47E+06 7.59E+06 2.46E+06 

0.15 8.11E+06 4.38E+06 8.10E+06 4.38E+06 

0.20 8.95E+06 7.51E+06 8.92E+06 7.37E+06 

0.25 1.02E+07 1.32E+07 1.02E+07 1.30E+07 

0.30 1.22E+07 2.43E+07 1.21E+07 2.30E+07 

0.35 1.51E+07 4.79E+07 1.51E+07 4.40E+07 

0.40 1.95E+07 1.01E+08 1.93E+07 8.51E+07 

0.45 2.64E+07 2.28E+08 2.64E+07 2.52E+08 

0.50 3.72E+07 5.46E+08 3.66E+07 3.58E+08 

0.55 5.43E+07 1.38E+09 5.21E+07 9.80E+08 

0.60 8.17E+07 3.64E+09 7.82E+07 1.29E+09 

0.65 1.26E+08 1.00E+10 1.22E+08 4.44E+09 

0.70 1.98E+08 2.84E+10 1.67E+08 4.25E+09 

 

Next, the tabular results are presented for the Anaheim network. Table 2-6 shows 

the results for the StrUE model, Table 2-7 shows the results for the StrSO model, 

and Table 2-8 shows the results for the StrSR model. A similar trend is displayed 

for the Anaheim network as was seen in the Sioux Falls network. As the 𝐶𝑉𝑠𝑡𝑟 

increases, the difference between the StrUE and the StrSO performance metrics, 

particularly ⋄ 𝐸 decreases. 
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Table 2-6 Overall Anaheim Results: StrUE 

𝐶𝑉𝑠𝑡𝑟 ⋄ 𝐸𝑆𝑡𝑟𝑈𝐸  ⋄ 𝑆𝑆𝑡𝑟𝑈𝐸  ⨀𝐸𝑆𝑡𝑟𝑈𝐸  ⨀𝑆𝑆𝑡𝑟𝑈𝐸  

0.00 1.32E+06 0 1.32E+06 0 

0.05 1.33E+06 9.65E+04 1.33E+06 9.65E+04 

0.10 1.34E+06 2.00E+05 1.34E+06 2.00E+05 

0.15 1.36E+06 3.22E+05 1.36E+06 3.22E+05 

0.20 1.38E+06 4.82E+05 1.39E+06 4.83E+05 

0.25 1.43E+06 7.21E+05 1.43E+06 7.17E+05 

0.30 1.50E+06 1.14E+06 1.50E+06 1.15E+06 

0.35 1.59E+06 1.96E+06 1.59E+06 1.85E+06 

0.40 1.74E+06 3.74E+06 1.74E+06 4.17E+06 

0.45 1.95E+06 7.83E+06 1.95E+06 6.27E+06 

0.50 2.27E+06 1.78E+07 2.30E+06 2.06E+07 

0.55 2.78E+06 4.32E+07 2.69E+06 1.93E+07 

0.60 3.55E+06 1.10E+08 3.66E+06 6.36E+07 

0.65 4.76E+06 2.92E+08 4.89E+06 1.13E+08 

0.70 6.73E+06 8.07E+08 5.89E+06 1.43E+08 

0.75 9.94E+06 2.31E+09 1.07E+07 8.14E+08 

0.80 1.52E+07 6.77E+09 1.38E+07 6.68E+08 

0.85 2.37E+07 2.02E+10 3.18E+07 5.63E+09 

 

Table 2-7 Overall Anaheim Results: StrSO 

𝑪𝑽𝒔𝒕𝒓  ⋄ 𝑬𝑺𝒕𝒓𝑺𝑶  ⋄ 𝑺𝑺𝒕𝒓𝑺𝑶 ⨀𝑬𝑺𝒕𝒓𝑺𝑶 ⨀𝑺𝑺𝒕𝒓𝑺𝑶 

0.00 1.30E+06 0 1.30E+06 0 

0.05 1.31E+06 8.86E+04 1.31E+06 8.85E+04 

0.10 1.32E+06 1.83E+05 1.32E+06 1.83E+05 

0.15 1.33E+06 2.90E+05 1.33E+06 2.91E+05 
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0.20 1.36E+06 4.25E+05 1.36E+06 4.23E+05 

0.25 1.39E+06 6.18E+05 1.39E+06 6.11E+05 

0.30 1.45E+06 9.42E+05 1.45E+06 9.37E+05 

0.35 1.53E+06 1.58E+06 1.54E+06 1.92E+06 

0.40 1.65E+06 2.99E+06 1.65E+06 2.95E+06 

0.45 1.84E+06 6.34E+06 1.82E+06 4.78E+06 

0.50 2.13E+06 1.47E+07 2.12E+06 1.12E+07 

0.55 2.58E+06 3.64E+07 2.60E+06 3.03E+07 

0.60 3.30E+06 9.54E+07 3.30E+06 3.62E+07 

0.65 4.46E+06 2.61E+08 5.31E+06 5.82E+08 

0.70 6.33E+06 7.38E+08 5.94E+06 1.81E+08 

0.75 9.40E+06 2.14E+09 8.91E+06 3.03E+08 

0.80 1.44E+07 6.36E+09 1.28E+07 1.05E+09 

0.85 2.28E+07 1.92E+10 3.38E+07 7.29E+09 

 

Table 2-8 Overall Anaheim Results: StrSR 

𝐶𝑉𝑠𝑡𝑟  ⋄ 𝐸𝑆𝑡𝑟𝑆𝑅  ⋄ 𝑆𝑆𝑡𝑟𝑆𝑅 ⨀𝐸𝑆𝑡𝑟𝑆𝑂   ⨀𝑆𝑆𝑡𝑟𝑆𝑂 

0.05 1.32E+06 86389.3 1.32E+06 8.63E+04 

0.10 1.33E+06 1.78E+05 1.33E+06 1.78E+05 

0.15 1.35E+06 2.83E+05 1.35E+06 2.84E+05 

0.20 1.38E+06 4.13E+05 1.38E+06 4.16E+05 

0.25 1.42E+06 5.99E+05 1.42E+06 5.96E+05 

0.30 1.49E+06 9.09E+05 1.49E+06 9.37E+05 

0.35 1.58E+06 1.52E+06 1.57E+06 1.42E+06 

0.40 1.72E+06 2.87E+06 1.73E+06 2.98E+06 

0.45 1.92E+06 6.10E+06 1.93E+06 5.93E+06 

0.50 2.22E+06 1.43E+07 2.21E+06 9.99E+06 

0.55 2.69E+06 3.57E+07 2.67E+06 1.81E+07 
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0.60 3.41E+06 9.42E+07 3.31E+06 3.34E+07 

0.65 4.56E+06 2.59E+08 4.42E+06 7.73E+07 

0.70 6.42E+06 7.34E+08 6.79E+06 3.44E+08 

 

Finally, the strategic method results on the largest test network presented in this 

thesis are presented in Table 2-9, Table 2-10, Table 2-11. The Gold Coast network is 

relatively uncongested, revealed by an analysis of the expected link flows and 

standard deviations.  

Table 2-9 Overall Gold Coast Results: StrUE 

𝑪𝑽𝒔𝒕𝒓 ⋄ 𝑬𝑺𝒕𝒓𝑼𝑬 ⋄ 𝑺𝑺𝒕𝒓𝑼𝑬 ⨀𝑬𝑺𝒕𝒓𝑼𝑬 ⨀𝑺𝑺𝒕𝒓𝑼𝑬 
Time 

(seconds) 

0.00 1.19E+06 0 1.19E+06 0 460.48 

0.05 1.19E+06 7.54E+04 1.19E+06 7.55E+04 437.20 

0.10 1.20E+06 1.55E+05 1.20E+06 1.54E+05 464.94 

0.15 1.21E+06 2.43E+05 1.21E+06 2.43E+05 478.86 

0.20 1.22E+06 3.50E+05 1.22E+06 3.51E+05 577.91 

0.25 1.25E+06 4.94E+05 1.25E+06 4.97E+05 614.55 

0.30 1.28E+06 7.19E+05 1.28E+06 7.14E+05 641.58 

0.35 1.33E+06 1.14E+06 1.33E+06 1.12E+06 823.85 

0.40 1.40E+06 2.03E+06 1.40E+06 2.50E+06 938.35 

0.45 1.51E+06 4.08E+06 1.51E+06 5.60E+06 1189.58 

0.50 1.67E+06 9.02E+06 1.64E+06 5.89E+06 1451.23 

 

Figure 2:10 shows an analysis comparing the scale of the expected total travel time 

⋄ 𝐸𝑆𝑡𝑟𝑈𝐸  and the standard deviation ⋄ 𝑆𝑆𝑡𝑟𝑈𝐸 . Even in an uncongested network like 
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the Gold Coast, there is a significant variation in total system travel time. When 

𝐶𝑉𝑠𝑡𝑟 > 0.4, the variations is twice the total system travel time itself. 

 

Figure 2:10 Comparison of ⋄ 𝑆/⋄ 𝐸 on the Gold Coast network 

Table 2-10 shows the sensitivity analysis results for StrSO on the Gold Coast 

network. The rightmost column also shows the computation time in seconds. The 

computation time increases as the network volatility increases because more 

iterations are necessary to converge the relative gap. Due to the fact that the Gold 

coast is a relatively uncongested network, the differences between StrUE and StrSO 

are not as substantial.  

Table 2-10 Overall Gold Coast Results: StrSO 

𝑪𝑽𝒔𝒕𝒓  ⋄ 𝑬𝑺𝒕𝒓𝑺𝑶  ⋄ 𝑺𝑺𝒕𝒓𝑺𝑶 ⨀𝑬𝑺𝒕𝒓𝑺𝑶 ⨀𝑺𝑺𝒕𝒓𝑺𝑶 Time  

0.00 1.18E+06 0  1.18E+06 0 1874.14 

0.05 1.18E+06 7.04E+04 1.18E+06 7.04E+04 1911.85 

0.10 1.18E+06 1.43E+05 1.18E+06 1.44E+05 2131.89 
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0.15 1.19E+06 2.23E+05 1.19E+06 2.23E+05 2439.88 

0.20 1.20E+06 3.14E+05 1.20E+06 3.14E+05 2778.05 

0.25 1.22E+06 4.29E+05 1.22E+06 4.30E+05 3736.80 

0.30 1.25E+06 5.97E+05 1.25E+06 6.16E+05 5249.95 

0.35 1.29E+06 8.91E+05 1.29E+06 8.89E+05 7319.21 

0.40 1.34E+06 1.51E+06 1.34E+06 1.65E+06 10011.30 

0.45 1.43E+06 2.97E+06 1.42E+06 2.12E+06 15040.10 

0.50 1.56E+06 6.60E+06 1.57E+06 8.63E+06 20095.60 

 

Finally, Table 2-11 shows the sensitivity analysis results for the StrSR model on the 

Gold Coast network. The ⋄ 𝐸𝑆𝑡𝑟𝑆𝑟 is greater than the ⋄ 𝐸𝑆𝑡𝑟𝑆𝑂, but the ⋄ 𝑆𝑆𝑡𝑟𝑆𝑅 is less 

than the ⋄ 𝑆𝑆𝑡𝑟𝑆𝑂. Again, the results show a small percentage difference due to the 

characteristics of the Gold Coast network. 

Table 2-11 Overall Gold Coast Results: StrSR 

𝑪𝑽𝒔𝒕𝒓  ⋄ 𝑬𝑺𝒕𝒓𝑺𝑹  ⋄ 𝑺𝑺𝒕𝒓𝑺𝑹 ⨀𝑬𝑺𝒕𝒓𝑺𝑹 ⨀𝑺𝑺𝒕𝒓𝑺𝑹 

0.05 1.19E+06 68884.4 1.19E+06 68753.6 

0.10 1.20E+06 1.40E+05 1.20E+06 1.40E+05 

0.15 1.21E+06 2.17E+05 1.21E+06 2.17E+05 

0.20 1.22E+06 3.04E+05 1.22E+06 3.03E+05 

0.25 1.25E+06 4.12E+05 1.25E+06 4.14E+05 

0.30 1.28E+06 5.67E+05 1.28E+06 5.62E+05 

0.35 1.32E+06 8.37E+05 1.32E+06 8.44E+05 

0.40 1.39E+06 1.41E+06 1.39E+06 1.33E+06 

0.45 1.48E+06 2.79E+06 1.48E+06 2.60E+06 

0.50 1.60E+06 6.30E+06 1.62E+06 4.79E+06 
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The strategic framework quantifies the variation in total system travel time as a 

result of the variation in the total travel demand distribution. Analysis beyond the 

scope of this thesis will reveal the extent of calibration that is needed to apply the 

framework to realistic networks but this section demonstrates that the theory is 

sound. 

2.6.4 Link-Level Model Results 

While system level performance metrics are the primary values of interest to 

transport planners, it is often important to make link level estimations of 

performance as well. In particular, link level measures such as estimated travel 

time or flow are often used in the calibration process for standard traffic 

assignment models. However, caution such be employed regarding link level 

evaluations in static traffic assignment models. Excluding the concerning 

assumptions with regard to the representation of capacity, from a pure modelling 

perspective, link level results should be treated with caution. This is due to the 

solution methods for the modelling and the equilibrium principle itself; Bar-Gera 

(2010) suggests that in many equilibrium models, there may not be just a single 

equilibrium solution with regard to link flow.  

 Frank Wolfe is a commonly used solution approach due to its 

straightforward implementation and its undemanding computational 

requirements. However, as mentioned in Section 2.5, when it comes to the small 

changes that determine an equilibrium solution, Frank Wolfe displays what’s 
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known as the “tailing” effect (Dial, 2006). Essentially, Frank Wolfe adjusts the link 

flows for all OD pairs by an identical amount, regardless of how close or far from an 

equilibrium solution that OD pair may be. This limits the effectiveness of the Frank 

Wolfe method. However, even methods that can achieve a higher level of precision 

(relation gap < 10−14) still display the issue of multiple possible equilibrium 

solutions. While the equilibrium system performance metric remains the same 

(such as the total system travel time), the flows themselves may vary, although to 

what extent is still an open question for researchers.   

 However, link level performance metrics are still an important 

representation of model performance and a characteristic that is of interest to 

planners. Therefore, this section will briefly examine one of the link level metrics of 

performance, the standard deviation of travel time ⋄ 𝑆𝑖𝑗.  

 Table 2-12 shows a histogram comparing the link standard deviation ⋄ 𝑆𝑖𝑗 

resulting for the StrUE and StrSO models where 𝐶𝑉𝑠𝑡𝑟 = 0.15, where the range of 

⋄ 𝑆𝑖𝑗(minutes) is shown in leftmost column. The columns titled StrUE and StrSO 

indicate the number of links that were in the range indicated in the leftmost 

column. An examination of the results suggests that StrSO actually displayed a 

higher standard deviation on some links, particularly in the “7.5-10 minutes” bin, 

which contained 4 links in the StrUE model but 6 links in the StrSO model. While 

the system standard deviation is lower in the StrSO model, it is interesting to note 

that the impact on individual links could be counter-intuitive.  
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Table 2-12 Sioux Falls network: comparison of ⋄ 𝑆𝑖𝑗 

Link STD StrUE StrSO 

0 0 0 

<1 22 20 

1-2.5 14 17 

2.5-5 16 17 

5.0-7.5 18 14 

7.5-10 4 6 

10-12.5 2 2 

>12.5 0 0 

 

The Sioux Falls network is considered congested, with a maximum flow-to-capacity 

ratio of 2.57 and average ratio of 1.46. On the other hand, the Anaheim network has 

a maximum average-flow-to-capacity ratio of 1.88 and an average of 0.26 (due to 

the fact that it has many links that are not utilized). The links with a low average-

flow-to-capacity ratio will also have a low standard deviation. Anaheim is less 

congested, and therefore the range of standard deviations will be much smaller, as 

seen in Table 2-13. A majority of the links in the Anaheim network have a standard 

deviation of less than half a minute. This result makes sense in a larger network, 

where only specific links may be the main cause of congestion. 
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Table 2-13 Anaheim network: comparison of ⋄ 𝑆𝑖𝑗 

Link STD StrUE StrSR 

<0.25 158 84 

0.25-0.50 742 824 

0.50-0.75 11 4 

0.75-1.0 2 1 

1.0-1.5 0 0 

1.5-2.0 0 0 

>2.0 1 1 

 

2.7 Concluding remarks 

This chapter introduced the three base, time-invariant strategic modelling 

approaches. A background and literature review provided a detailed problem 

context for the strategic modelling approach that accounts for day-to-day 

uncertainty in demand. Each model was discussed and formulated. Next, this 

chapter discussed a number of assumptions to make the model tractable and 

derived system performance metrics. A solution approach based on the Frank 

Wolfe method was described and outlined. Finally, the models were demonstrated 

and compared on four test networks. 

 One of the primary advantages of the strategic approach is that it can be 

extended to many practical problems that are relevant to practitioners and 

researchers alike. The next two chapters extend the base model to the tolling 

problem and the network design problem. 
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3.1 Introduction 

Transport network road pricing is a topic of great interest to researchers and 

practitioners alike. It is one of the primary management tools available to road 

operators to improve network performance for the benefit of the system as a 

collective. Additionally, a well-planned tolling scheme will not only help relieve 

congestion, it can also produce a profit that will help operators expand and 

maintain infrastructure for a stronger, more reliable system. 

 However, the problem of road pricing becomes more complex when the 

inherent uncertainty in origin-destination (OD) trip demand in considered. While 

traditional deterministic models like the marginal social cost (MSC) approach can 

be easily solved, they may overestimate performance when factors such as the 

future planning demand vary from the forecasted value. Additionally, a 
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deterministic model does not capture the effect of day-to-day demand volatility on 

user route choice behaviour.  

 Road network pricing research has a well-established foundation in the 

literature. One common research topic is marginal social cost (MSC) pricing, based 

on the economic ideas of Pigou (1920). This pricing scheme assumes users behave 

in a "selfish" manner, seeking to minimize their own travel costs. Prices are then set 

on each link such that a user is charged a toll equivalent to the marginal impact of 

her using a given link (i.e., the increase in travel cost to everyone on a link resulting 

from a single additional user). This is also referred to as first best pricing, in which 

all links in a network are priced. Second best pricing represents an extension of this 

problem, in which a subset of the network links are tolled. 

 While the first best pricing problem can be easily solved, a complexity is 

introduced when demand uncertainty is considered. In the short term, users face a 

varying day-to-day travel demand. For longer term planning, unpredictable 

changes in land use, technology, and many other factors make demand forecasts 

difficult. These inherent network uncertainties must be accounted for in pricing 

models to ensure they are robust to future changes in travel demand. The success 

of a particular project relies on accurately predicting tolling profits. Around the 

world, a surprising number of failed tollway projects have consistently relied on 

poorly forecasted demand for modelling, and suffered the consequences (Bain, 

2009). 
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 A particular example of this can be found in the well-known case of the 

Sydney Cross City Tunnel (Phibbs, 2008). The Cross City Tunnel was a public-

private partnership project intended to connect the eastern suburbs to the western 

suburbs of Sydney that opened in 2005. Unfortunately, the operating company 

went into receivership less than two years after the tunnel opened, and it is 

estimated that $220 million dollars of initial investment has been lost. While there 

are many complex factors that lead to the ultimate failure of any project, most 

agree that an important contributor to Cross City Tunnel case was the poorly 

forecasted demand values. It was estimated that a daily demand of 90,000 vehicles 

would use the tunnel, while the actualized number was closer to 30,000. Another 

complaint was that the toll was much too high and discouraged people from using 

the tunnel. While this is an extreme example, the importance of accounting for 

factors of uncertainty, particularly when it relates to the financing of an important 

public project, cannot be underestimated. A more detailed analysis of tollways in 

Australia and the impact of inaccurate demand forecasts can be found in Zheng and 

Chiu (2011). 

 Finally, it is worth noting that the methods proposed here are only one small 

part of the ultimate decision-making process for any tollway project. Non-technical 

factors such as a bias toward optimism and politically and/or economically 

motivated misrepresentation, as well as social attitudes towards congestion 

pricing, are all important factors that play a role in toll prices that are actually used 

in practice (Flyvbjerg, 2008) . In an interesting look at tollway projects in Australia, 
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Davidson (2011) includes a case study for a potentially representative case for the 

Go Between Bridge in Brisbane. In this paper he noted the frequent changes to 

forecasted demand values used during the modelling process and described ways 

in which this value was misused. Such practices indicate that accounting for 

demand uncertainty when modelling tollway projects is a challenging and timely 

problem recognized by practitioners, and is indeed one of the recommendations to 

improve toll modelling made by Davidson in the conclusion of his paper.  

 This work explores a first best tolling framework when the impact of short-

term day-to-day demand uncertainty on user behaviour is included by 

implementing a variant of a strategic user equilibrium based assignment model, 

referred to as StrUE  (Dixit et al, 2013). Under StrUE, users determine route choice 

based on the expected shortest cost path for a known distribution of the day-to-day 

demand. The strategic model output is a set of fixed link flow proportions that 

define link flow patterns. Then, on any given day, the actual link flow volumes will 

be a function of the strategic fixed proportions and the realized demand. Therefore, 

a particular demand realization will result in non-equilibrium link flows, 

representing the volatile network behaviour observed in reality. Using a marginal 

social cost based approach, this work proposes a tolling methodology that attempts 

to induce strategic system optimal (StrSO) behaviour from users in a strategic 

equilibrium with tolls (StrT) model. 
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 The long-term uncertainty in planning demand also plays an important role; 

if the future planning demand scenario varies from the forecast, the performance of 

a tolling scheme may be overestimated. A robust pricing scheme will consistently 

estimate system performance for a range of possible future demand realizations.  

Therefore, this work proposes a procedure to evaluate the robustness of a tolling 

scheme, where possible future demand scenario realizations are sampled from a 

future planning demand distribution. The methodology introduced in this work 

isolates the effect of day-to-day demand uncertainty in the short-term from the 

effect of the long-term planning demand uncertainty, and presents a method to 

clearly compare the effects of accounting for each source on tolling scheme 

evaluation. Thus, this work demonstrates the importance of including both sources 

of uncertainty when evaluating the system performance of a tolling scheme. Figure 

3-1 summarizes the research contributions of Chapter 3. 

 

 
Figure 3:1 Summary of research contribution 

3.2 Background 

As previously noted, marginal social cost pricing based on Pigouvian (Pigou, 1920) 

taxes has a rich history in the literature (Yang & Huang, 1998). This method aims to 

 

Proposes strategic marginal cost based pricing scheme and solution 
methods; 

Considers methods to evaluation the long term uncertainty in the 
strategic planning demand. 
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set tolls in such a way that a collective system optimal behaviour is induced, rather 

than drivers choosing routes unilaterally to minimize their own travel time (selfish 

behaviour) (Newbery, 1990; Yang & Huang, 1998). The tolling framework 

addressed in this work is classified as first best, which means that it is possible to 

toll every link in the network in order to achieve some objective. While maximizing 

social welfare by relieving congestion may be a common goal from public planning 

agencies, many other objectives have also been explored, among those aims that 

may represent the interests of private tolling agencies, such as: maximizing 

revenue, minimizing tolling locations, and minimizing the maximum toll collected 

(Hearn & Ramana, 1997). 

 Second best tolling scenarios, in which not all links in the network are 

available to be tolled because of political or social restrictions, have also been well-

explored in the literature (Lawphongpanich & Hearn, 2004; Verhoef, 2002) . 

However, in order to introduce the impact of the StrT model, only schemes in which 

all links in the network are priced are considered in this work. 

 While the pioneering works on pricing road networks assumed travel 

demand and other network characteristics (such as link capacity) to be fixed 

values, the impact of uncertainties on transport models has become another 

popular topic in the literature. This is particularly important for tolling scenarios, 

because optimal prices that are calculated for an unrealized level of demand could 

have an unpredictable impact on network conditions, a fact that is further 
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discussed by Lemp and Kockelman (2009). It is commonly agreed that the main 

sources of uncertainty in a transport network result from the demand (Clark & 

Watling, 2005; Duthie et al, 2011), supply (Lo et al, 2006), and behavioural choices 

from travellers (Damberg et al, 1996). Boyles et al (2010) examined first best 

pricing while accounting for uncertainty in road capacity and further looked at the 

impact of supplying users with information about the state of the network. This 

work highlights the difference between tolling schemes that respond to network 

conditions and tolls that are intended to address recurring, predictable congestion. 

Each of these sources could impact optimal toll design in different ways. 

Researchers begin by analysing difference sources in isolation, but more 

complicated models like Gardner et al (2011) account for both uncertainty in 

demand and in supply may offer more realistic insights into the road network. 

 A number of works have approached the issue of travel demand uncertainty 

and its impact on tolling. Gardner et al (2008b) examine the impact of long-term 

demand uncertainty, such as that resulting from changes in land use, technology, 

and petrol prices, on robust tolling schemes, and evaluate a number of approaches 

to solve this problem. They show that MSC tolls that are calculated using an 

expected demand can result in suboptimal system performance, especially when 

the actual system performance differs significantly from what was forecasted. 

Gardner et al (2010) further explore a number of solution methods for solving a 

similar problem, finding that using an inflated demand scenario gave the most 

consistently robust results. Li et al (2008) propose a bi-level mathematical 
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programming formulation to solve for first best tolls aimed at increasing network 

reliability, where users' choices are determined using a multinomial logit model. 

Sumalee and Xu (2011) also examine the impact of stochastic demand by treating 

both network demand and link flows as random variables. This work addresses 

uncertainty in user behaviour by considering how different risk attitudes from 

users might impact pricing results, which is additionally a method of incorporating 

users' value of travel time reliability. Li et al (2012) extend this model to find the 

optimal tolls with the objective of minimizing emissions. 

 The work introduced here differs from previous contributions in its novel 

behavioural model to capture the strategic decisions of users. Strategic traffic 

assignment was described in Chapter 2 and finds equilibrium flows based on 

expected path costs. This model results in link volumes that will vary from day-to-

day, thus accounting for short-term demand uncertainty that users face making 

day-to-day route choice decisions. Waller et al (2013) propose a linear formulation 

for a dynamic version of the strategic problem that finds optimal route flows across 

a discrete set of possible demand scenarios.  

 Chapter 3 extends the strategic assignment model to a StrT first best pricing 

application. Previous work has examined the impact of short-term demand 

uncertainty or long-term demand uncertainty on first best tolling in isolation, but 

rarely in combination. This work proposes a flexible framework to fill this gap.  
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3.3 Pricing Model Description 

First, this section describes and formulates the strategic behavior based marginal 

social cost pricing model from a theoretical perspective. Next, the modeling 

assumptions are thoroughly discussed. Finally, this section provides a model 

analysis on a small example network. 

3.3.1 The StrUE MSC theoretical framework 

As previously discussed, the strategic route choice assignment model accounts for 

the day-to-day volatility in demand by assuming that users know the day-to-day 

demand distribution and make their choices strategically based on this knowledge. 

Travellers then follow a route choice decision based on expected cost regardless of 

manifested travel demand or experienced travel conditions, but the number of 

users traveling in each demand actualization will change based on the distribution 

of the total travel demand 𝑔(𝑇). The result of this approach is a fixed proportion of 

flow that will travel on each link; the actual link flow will then vary based on 

realizations from the day-to-day travel demand distribution. For completeness, 

Equations (3.1)-(3.4) show the mathematical formulation of the StrUE model, also 

presented in Chapter 2. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝑓) = ∫ ∑ ∫ 𝑡𝑖𝑗(𝑤𝑇)
𝑝𝑖𝑗

0(𝑖,𝑗)∈𝐴

∞

0

𝑔(𝑇)𝑑𝑤𝑑𝑇 (3.1) 



 

 

81 

 

subject to   

∑ 𝑓𝑘
𝑟𝑠

𝑘

= 𝑞𝑟𝑠 ∀𝑟 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆 (3.2) 

𝑓𝑘
𝑟𝑠 ≥ 0 ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾 (3.3) 

𝑝𝑖𝑗 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑖𝑗,𝑘

𝑟𝑠

𝑘∈𝐾𝑠∈𝑆𝑟∈𝑅

 ∀(𝑖, 𝑗) ∈ 𝐴 (3.4) 

As previously discussed, in order to ensure uniqueness of link flows, for each 

origin-destination, path flow proportion is assumed to be equal under all demand 

scenarios. Therefore, each path will be altered proportionally when the total origin-

destination demand varies. The system performance measures in the strategic 

approach can either be found through analytical derivations or simulation-based 

sampling methods, and will be detailed in the Section 3.3.2. A reminder of notation 

for this section is contained in Table 3-1. 

Table 3-1 Notation for the general strategic approach 

𝑎 ∈ 𝐴 Index for link 𝑎 in set of all network links 𝐴 

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 Index for origin 𝑟 in set of all origins 𝑅 and destination 𝑠 in set of 

all destinations 𝑆 

𝑝𝑎 Proportion of the total travel demand on link 𝑎 

𝑓𝑘
𝑟𝑠 Proportion of the total travel demand on path 𝑘 connecting 

origin 𝑟 and destination 𝑠 

𝑇 Random variable representing the total number of trips for all 

OD pairs 

𝑔(𝑇) Probability distribution for the day-to-day travel demand, 

representing number of trips 𝑇 
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𝑀𝑘 The 𝑘𝑡ℎ analytical moment of the demand distribution 𝑔(𝑇) 

𝑡𝑎(𝑝𝑇) Travel cost function on link 𝑎 

𝜏𝑎 ∈ Φ The toll value on link 𝑎 contained within set of tolls values Φ 

𝛿𝑎,𝑘
𝑟𝑠  Indicator equal to 1 if link 𝑎 in contained on path 𝑘 connecting 

origin 𝑟 and destination 𝑠 and 0 otherwise 

 

 The purpose of a MSC based pricing scheme is to ensure that the traffic 

patterns that result from individual decision makers seeking to maximize their own 

utility from a myopic perspective can be “improved” to the social optimal through 

the implementation of tolls. The problem of setting optimal tolls in the strategic 

assignment scenario becomes significantly more complex than the deterministic 

case. This is in part due to the way each model handles the “individual” traveller. 

The first order output of the deterministic user equilibrium model is link flows, 

representing the number of individuals on each link. Traditional pricing schemes 

target the individual vehicle on a link by pricing the individual impact on system 

travel time. Furthermore, realistic applications of traditional tolling are also 

constrained by the individual, because they must charge a certain amount to each 

user on a road each day. 

 However, the first order output from the strategic approach is proportions 

on each link, and the link flows are an extension of this proportion that change 

based on the realization of the day-to-day travel demand. Thus, a pure MSC 

strategic pricing approach would target the proportion of flow on a link by pricing 

the proportional impact on system travel time; however, system travel time is a 
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product of random variable 𝑇 and will be changing with each realization of the 

demand. It follows that the actual toll price on each link would also be changing 

with the realization of the total trips 𝑇. Therefore, in order to set a MSC pricing 

scheme that would result in perfect StrSO flow patterns, the network operator 

would need to have perfect knowledge of all demand realizations; obviously, this is 

unrealistic. 

 However, with a slight modification in approach, StrT can be derived to fit 

the more realistic data constraints of the problem. Therefore, the approach is based 

on the concept of an average daily demand total system travel time 𝐴𝐷(𝑇𝑆𝑇𝑇). In 

this method, the day-to-day demand realization is still a changing random variable 

𝑇, but an average daily total travel time, defined as the proportion on a link 

multiplied by the first moment (i.e., the mean) of the demand distribution, is 

targeted in the pricing scheme. In the strategic case the tolls are set so that the 

system travel time for an average daily demand is minimized. The 𝐴𝐷(𝑇𝑆𝑇𝑇)is 

calculated in Equation (3.6).  

𝐴𝐷(𝑇𝑆𝑇𝑇) = ∑ ∫ (𝑝𝑖𝑗𝑀1)𝑡𝑖𝑗(𝑝𝑇)𝑔(𝑇)𝑑𝑇
∞

0(𝑖,𝑗)∈𝐴

 (3.5) 

= 𝑀1 ∑ ∫ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝𝑇)𝑔(𝑇)𝑑𝑇
∞

0(𝑖,𝑗)∈𝐴

 (3.6) 

Equation (3.5) shows that because the first moment of the demand distribution 

(𝑀1) is constant and a property of the system demand, minimizing 𝐴𝐷(𝑇𝑆𝑇𝑇) is 
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equivalent to minimizing the expected total system travel time 𝐸(𝑇𝑆𝑇𝑇) =

∑ ∫ 𝑝𝑎𝑡𝑎(𝑝𝑇)𝑔(𝑇)𝑑𝑇
∞

0𝑎 . To derive the tolls that should be implemented on each link 

so as to minimize 𝐴𝐷(𝑇𝑆𝑇𝑇), one must consider the integration by parts of the 

following term: 

∑ ∫  ∫ 𝑝
𝑑𝑡𝑖𝑗(𝑝𝑇)

𝑑𝑝
𝑑𝑝 𝑔(𝑇)𝑑𝑇

𝑝𝑖𝑗

0

∞

0(𝑖,𝑗)∈𝐴

  (3.7) 

= ∑ ∫ (𝑝𝑖𝑗𝑡𝑖𝑗(𝑝𝑖𝑗𝑇) −  ∫ 𝑡𝑖𝑗(𝑝, 𝑇)𝑑𝑝)
∞

0

) 𝑔(𝑇)𝑑𝑇
∞

0(𝑖,𝑗)∈𝐴

 (3.8) 

= ∑ ∫ ∫ ((𝑡𝑖𝑗(𝑝, 𝑇) + 𝑝
𝑑𝑡𝑖𝑗(𝑝, 𝑇)

𝑑𝑝
) 𝑑𝑝) 𝑔(𝑇)𝑑𝑇

𝑝𝑖𝑗

0

∞

0(𝑖,𝑗)∈𝐴

 (3.9) 

= ∑ ∫ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇
∞

0(𝑖,𝑗)∈𝐴

 (3.10) 

It is observed that minimizing the first part of the left hand side of the Equation 

(3.7) represents the StrUE objective and the minimizing the right hand side 

presented in Equation (3.8) represents minimizing 𝐴𝐷(𝑇𝑆𝑇𝑇). Therefore the 

marginal toll that needs to be applied on each link would be, 𝑝𝑎
∗  is the 𝐴𝐷(𝑇𝑆𝑇𝑇) 

flow pattern: 

𝜏𝑖𝑗 = ∫ ∫ 𝑝
𝑑𝑡𝑖𝑗(𝑝, 𝑇)

𝑑𝑝

𝑝𝑎
∗

0

∞

0

𝑑𝑝𝑔(𝑇)𝑑𝑇 (3.11) 
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3.3.2 The StrT application 

This section describes the specific notation, equations and assumptions made for 

the application of the StrT model and the MSC approach in this work. Table 3-2 

contains a detailed summary of the notation introduced in this section.   

Table 3-2 Additional notation for the chapter 3 pricing application 

𝑇 

Day-to-day random variable for the demand following a lognormal 

distribution, 𝑇~𝐿𝑁(𝜇𝑠, 𝜃𝑠); assume a fixed proportion of demand 

for all OD pairs. 

𝐸𝑠(𝑇) The expected total number of trips, where 𝐸(𝑇) = 𝑒𝜇𝑠+𝜃𝑠
2/2 

𝑉𝑎𝑟𝑠(𝑇) 
The variance of the total number of trips 𝑇, where 𝑉𝑎𝑟(𝑇) = (𝑒𝜃𝑠

2
−

1)𝑒2𝜇𝑠+𝜃𝑠
2
  

𝐶𝑉𝑆 

The coefficient of variation of the day-to-day travel demand 

distribution equal to the ratio of the mean to the standard 

deviation: 
𝐸(𝑇)

√𝑉𝑎𝑟(𝑇)
 

𝑔(𝐸𝑠, 𝐶𝑉𝑆) 

Convenient notation of the lognormal strategic day-to-day demand 

distribution with expected value of demand 𝐸𝑆 and standard 

deviation of demand 𝐶𝑂𝑉𝑆 ∗ 𝐸𝑆; assume that parameters 𝜇𝑠 and 𝜃𝑠 

are found as above. 

𝒑 
Set of link flow proportions for all 𝑎 ∈ 𝐴 output by a strategic 

assignment model 

𝑐𝑎 Capacity on link 𝑎 in 𝑣/ℎ𝑟 

𝑡𝑓,𝑎 Free flow travel time on link 𝑎 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠) 

𝛼, 𝛽 
Geometric link parameters for the BPR cost function equal to 0.15 

and 4 respectively 

𝑉𝑂𝑇𝑇 
The value of travel time for network users; for simplicity, assumed 

to be $10/𝑚𝑖𝑛 

𝑇𝑆𝑇𝑇 Abbreviation for total system travel time 

𝑛 Sample realized demand values where 𝑛: 𝑇~𝐿𝑁(𝜇𝑠, 𝜃𝑠) 

𝑁 Total number of demand samples  

𝐸 
A system performance measure representing expected value of 

𝑻𝑺𝑻𝑻 (minutes) 
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𝐴𝐷 

A system performance measure representing the expected value 

average demand system travel time based on the average daily 

demand (minutes) 

𝑆𝑇𝐷 
A system performance measure representing standard deviation 

of 𝑻𝑺𝑻𝑻 (minutes) 

𝑅 
A system performance measure representing expected revenue 

from a pricing scheme Φ ($) 

⋄ (⋅) 
Symbol meaning that value " ⋅ " is analytically derived, e.g., ⋄ 𝐸 is 

the analytical 𝑇𝑆𝑇𝑇 

⨀(⋅) 
Symbol meaning that value " ⋅ " was obtained through simulation 

testing, e.g., ⨀𝐸 is the average 𝑇𝑆𝑇𝑇 from 𝑛 demand samples 

Δ(⋅,⋅) 

The percentage difference between two system performance 

measures; e.g., Δ(⋄ 𝐸𝑆𝑡𝑟𝑈𝐸 , ⨀𝐸𝑆𝑡𝑟𝑈𝐸) is difference between the 

analytical and simulated 𝐸 values resulting from StrUE (%) 

 

 Regarding the day-to-day travel demand, this approach assumes a 

lognormal distribution with random variable 𝑇~𝐿𝑁(𝜇𝑠, 𝜃𝑠), and that the OD 

demand follows fixed, specified proportions. Travellers make their route choices 

based on knowledge of the distribution and the resulting expected travel costs. 

Additionally, as in the previous chapter, this work uses a modified version of the 

well-known BPR function to make the formulation presented in previous section 

tractable:  

𝑡𝑖𝑗(𝑝, 𝑇) = 𝑡𝑖𝑗
𝑓

(1 + 𝛼 (
𝑝𝑖𝑗𝑇

𝑐𝑖𝑗
)

𝛽

) (3.12) 

In order to derive the link toll values in this work, where the 𝛼 and 𝛽 parameters 

are the same for all links in the network, and �̅� is the optimal link proportion 

patterns resulting from the StrAD, the tolls can be represented as: 
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𝜏𝑖𝑗 = 𝑡𝑓𝛼𝛽𝑀𝛽 (
𝑝𝑖𝑗̅̅̅̅

𝑐𝑖𝑗
)

𝛽

   (3.13) 

The four assignment problems necessary in this approach (StrUE, StrSO, StrAD, and 

StrT) result in three possible system performance measures each. The value of a 

system performance measure will differ depending on the assignment problem. 

 The three system performance measures are: expected total system travel 

time 𝐸, average demand total system travel time 𝐴𝐷, and standard deviation of 

total system travel time 𝑆𝑇𝐷. Additionally, the StrT problem includes tolling and 

outputs expected revenue 𝑅. While this combination results in 14 possible system 

performance measures, not all of these combinations are necessary in order to 

evaluate the pricing model performance. This work focuses on 𝐸 and 𝑆𝑇𝐷. 

 Each of these performance measures can be analytically derived using the 

theoretical framework described in Section 3.3.1 and Section 2.3.1 and the 

assumptions about the demand distribution. Continuing from the previous chapter, 

the symbol “⋄” indicates that a measure was calculated from the analytical 

equation. The three analytical performance measures can be found as:   

⋄ 𝐸 =  ∑ (𝑡𝑖𝑗
𝑓

(𝑝𝑖𝑗𝑀1 + 𝛼
𝑝𝑖𝑗

𝛽+1

𝑐𝑖𝑗
𝛽

𝑀𝛽+1))

𝑎∈𝐴

 (3.14) 

⋄ 𝐴𝐷 =  ∑ (𝑡𝑓𝑀1𝑝𝑖𝑗 (1 + 𝛼
𝑝𝑎

𝛽+1

𝑐𝑖𝑗
𝛽

𝑀𝛽))

(𝑖,𝑗)∈𝐴

 (3.15) 
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⋄ 𝑆 = (𝐹2𝑀2 + 𝐷2𝑀2𝛽+2 + 2𝐹𝐷𝑀𝛽+2 − (𝐹𝑀1 + 𝐷𝑀𝛽+1)
2

)
1/2

 (3.16) 

⋄ 𝑅 = ∑ 𝑝𝑖𝑗𝑀1𝜏𝑖𝑗

(𝑖,𝑗)∈𝐴

 (3.17) 

Additionally, system performance measures can be found through simulation 

testing, where random numbers are generated from the strategic demand 

distribution to represent demand realizations. Dixit et al (2013) show that 

analytical and simulation results converge. It was observed through empirical 

testing that a high number of demand samples 𝑁 were necessary for the analytical 

and simulation results to reliably converge. This is a reflection of the complex 

behaviour of the 𝑆𝑡𝑟𝑇 assignment problem and the polynomial power 𝛽. In order to 

find a balance between computation and convergence reliability, a generous value 

of 𝑁 = 200,000 (unless specified otherwise) is assumed for the remainder of this 

work. 

 The pseudo-code for finding the strategic marginal social cost based tolls is 

presented in Algorithm 4.1. The steps of this algorithm consist of solving the StrUE 

model to get the results for the base case (for the purposes of comparison), then 

solving the same network data for the StrSO case, then calculating the toll for each 

link, then solving the StrT model, then calculating the performance metrics. 
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Algorithm 3.1: Strategic pricing pseudo-code 

INPUT: Network 𝐺 = (𝑁, 𝐴); 𝑔(𝐸𝑆, 𝐶𝑉𝑆); 

 procedure solve_StrT() 

1:  //solve for the base StrUE model  

2:  𝑝𝑖𝑗,𝑆𝑡𝑟𝑈𝐸∀(𝑖, 𝑗) ∈ 𝐴,⋄ 𝐸𝑆𝑡𝑟𝑈𝐸 ,⋄ 𝑆𝑆𝑡𝑟𝑈𝐸 ← solve StrUE(𝑔(𝐸𝑆, 𝐶𝑉𝑆)); 

3:  ⨀𝐸𝑆𝑡𝑟𝑈𝐸 , ⨀𝑆𝑆𝑡𝑟𝑈𝐸 ← simulation sub-procedure(𝒑𝑺𝒕𝒓𝑼𝑬); 

4:  �̅�𝑺𝒕𝒓𝑨𝑫 ← solve StrAD(𝑔(𝐸𝑆, 𝐶𝑉𝑆)); 

5:  //calculate network tolls for distribution 

6:  for (𝑖, 𝑗) ∈ 𝐴 do 

7:  𝜏𝑖𝑗 ←  𝑡𝑓,𝑖𝑗 ∗ 𝛼 ∗ 𝛽 ∗ 𝑀𝛽 ∗  𝑝𝑜𝑤(𝑝𝑖𝑗̅̅̅̅ / 𝑐_𝑖𝑗 , 𝛽)   ; 

8:  Φ𝑠 ← (Φ𝑠 ∪ 𝜏𝑖𝑗); 

9:  end for 

10:  //apply tolls and solve new model 

11:  𝒑𝑺𝒕𝒓𝑻,⋄ 𝐸𝑆𝑡𝑟𝑇 ,⋄ 𝑆𝑆𝑡𝑟𝑇 ← Solve_StrT(𝑔(𝐸𝑆, 𝐶𝑉𝑆), Φ𝑠); 

12:  ⨀𝐸𝑆𝑡𝑟𝑇 , ⨀𝑆𝑆𝑡𝑟𝑇 ← Simulation Subprocedure(𝒑𝑺𝒕𝒓𝑻); 

13:  Calculate Δ; 

 end procedure 

OUTPUT: Φ𝑠;  

 

The next section provides a small network demonstration of the StrT pricing model 

and solution approach. 

3.3.3 Demonstration 

This demonstration focuses on clarifying the MSC StrT approach and studying the 

impact of the strategic day-to-day demand uncertainty on system performance. The 

demonstration network is similar to the well-known Braess’s paradox network, in 

which the addition of a link between nodes two and three causes an increase in 

TSTT due to the difference in equilibrium versus system optimal behaviour. This 

network was chosen to capture the interaction between strategic user behaviour 



 

 

90 

 

and the presence of tolls. Figure 3:2 shows the demonstration network, network 

parameters, and demand. The initial demand lognormal distribution in this 

problem has parameters  𝐸𝑠(𝑇) = 20 and 𝐶𝑉𝑆 = 0.2.   

 

Figure 3:2 Demonstration network and network parameters. 

The results from the analytical method compared to the simulation method 

converge closely, in part due to the high number of demand samples. Table 3-3 

shows the analytical and simulation results for 𝐸 and 𝐴𝐷 resulting from the 𝑆𝑡𝑟𝑈𝐸 

and the 𝑆𝑡𝑟𝑇 assignment problems. While the values of 𝐴𝐷 and 𝐸 are not the same, 

solving the StrAD and the StrSO assignment problems will result in identical 

proportions.  

Table 3-3 Convergence results for 𝐸 and 𝐴𝐷 for the StrUE and StrT assignment 

patterns. 

 
⋄ (⋅) ⨀(⋅) 𝚫(⋄, ⨀) 

𝑬𝑺𝒕𝒓𝑼𝑬 1526 1531 0.31% 

𝑨𝑫𝑺𝒕𝒓𝑼𝑬 1394 1397 0.20% 
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𝚫(𝑬𝑺𝒕𝒓𝑼𝑬, 𝑨𝑫𝑺𝒕𝒓𝑼𝑬) 8.7% 8.8% - 

𝑬𝑺𝒕𝒓𝑻 1066.87 1066 0.0% 

𝑨𝑫𝑺𝒕𝒓𝑻 1026.51 1026.11 0.00% 

𝚫(𝑬𝑺𝒕𝒓𝑻, 𝑨𝑫𝑺𝒕𝒓𝑻) 3.78% 3.74% - 

 

Additionally, this demonstration illustrates the impact of variation in the day-to-

day demand, quantified as the 𝐶𝑉𝑆 of the strategic demand distribution, on the 

system performance. In order to capture this effect, Algorithm 3.1 described in 

Section 3.3.2 was implemented using the same 𝐸𝑆(𝑇) but varying 0 ≤  𝐶𝑉𝑆 ≤ 0.85 

in increments of 0.05. Figure 3:3 Analytical results on the demonstration network 

and Figure 3:4 display the results of ⨀𝐸 and ⨀𝑆𝑇𝐷 from the untolled assignment 

StrUE and the assignment including tolls StrT from the varying 𝐶𝑉𝑆 experiment.  

 

Figure 3:3 Analytical results on the demonstration network 
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Figure 3:4 Performance metrics on demonstration network 

Figure 3:3 and Figure 3:4 display the results from StrUE and StrT in two ways; 

Figure 3:3 shows the absolute results while Figure 3:4 shows the relative results. 

The horizontal axis in both Figure 3:3and Figure 3:4 show the 𝐶𝑉𝑆 of the strategic 

demand distribution. The vertical axis of Figure 3:3 shows the value of ⨀𝐸 and 

⨀𝑆𝑇𝐷 in minutes. The vertical axis of Figure 3:4 shows the percentage difference 

between the StrUE results and the StrT results, Δ(⨀𝑆𝑡𝑟𝑈𝐸, ⨀𝑆𝑡𝑟𝑇), for both 𝐸 and 

𝑆𝑇𝐷. This is a reflection of system performance improvement that resulted from 

the implementation of tolls.  

 To order to facilitate visual comprehension, the results for the ⋄ metrics are 

in solid lines and the results for the ⨀ are in dashed lines. Therefore, visually 

speaking, for any value of 𝐶𝑉𝑆, the difference between the two solid lines in Figure 
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3:3 is equal to the point for that value of 𝐶𝑉𝑆 in Figure 3:4 and the same for the 

dashed lines.  

 For the case of 𝐶𝑉𝑆 = 0.05, Figure 3:3 shows ⨀𝐸𝑆𝑡𝑟𝑈𝐸 = 1397 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 

⨀𝐸𝑆𝑡𝑟𝑇 = 978 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. The difference between these two values is about 30%, 

which is the Δ value shown by the blue bar for 𝐶𝑉𝑆 = 0.05 in Figure 3:3. The 30% 

represents the reduction in expected TSTT due to the tolling scheme, which also 

reduced ⨀𝑆𝑇𝐷 by 65%. 

 Figure 3:3 illustrates the relation between variation in day-to-day demand 

and network tolling behaviour. When 0.05 ≤  𝐶𝑉𝑆 ≤ 0.3, the addition of tolls 

consistently reduced ⨀𝐸 and ⨀𝑆𝑇𝐷 in the network in a nonlinear fashion. 

However, when 0.4 ≤ 𝐶𝑉𝑆, this relationship dismantles, and the ⨀𝑆𝑇𝐷 for both 

StrUE and StrT becomes much greater than ⨀𝐸. Additionally, Figure 3:4 indicates 

that the relative differences between the tolled and untolled networks are smaller 

for higher 𝐶𝑉𝑆 values. Figure 3:3 is not scaled to include these values because an 

𝑆𝑇𝐷 that is so much greater than the 𝐸 value seems unrealistic. While of course, 

observations are network specific, results indicate that the strategic pricing model 

may be best applied in networks where the 𝐶𝑉𝑆 < 0.4. 

3.4 Long Term Demand Uncertainty 

While the strategic pricing approach accounts for the short term uncertainty in 

demand users face when making route choice decisions, planners must still be 

concerned regarding the uncertainty in the long-term future planning demand. In 
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the deterministic approach, the interpretation of this concept lies in the exact value 

of demand that is used to make planning decisions. In cases accounting for long-

term uncertainty, the future realization of the travel demand may be different from 

the predicted planning value. Gardner et al (2008b) show that not accounting for 

possible variation in realized planning demand may result in overestimation of toll 

performance. 

Table 3-4 Notation regarding the long term demand uncertainty in Chapter 3 

𝜔 Possible long term (future) demand scenario realization 𝜔 

Ω(𝜇Ω, 𝜃Ω) 
Distribution of long term (future) planning demand scenarios 

𝜔~𝑁(𝜇Ω, 𝜃Ω) 

𝐶𝑉Ω 

The coefficient of variation of the long term planning demand 

scenario distribution to the ratio of the mean to the standard 

deviation: 
𝜇Ω

𝜃Ω
 

𝑄 
Number of long term demand scenario samples where 

𝑄: 𝜔~𝑁(𝜇𝐷 , 𝜃𝐷) 

𝑀(∙) 

The mean of a quantity obtained from set of 𝑄 planning demand 

samples; i.e., 𝑀(⋄ 𝐸) is the long term expected analytical total 

system travel time 

𝑆𝑇𝐷(∙) 

The standard deviation of a quantity obtained through set of 𝑄 

samples; i.e., 𝑆𝑇𝐷(⨀𝑆𝑇𝐷) is the standard deviation of a set of 

standard deviations of each demand scenario obtained through 

simulation 

 

 An analogous situation exists with the strategic approach. However, in the 

strategic approach the long-term planning uncertainty regards a future demand 

scenario. In each demand scenario, planners know that travellers will react 

strategically by using their knowledge of 𝑔(𝐸𝑆, 𝐶𝑉𝑆) to make route choices, but the 
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planner does not know the exact value of 𝐸𝑆 that will be realized. In order to have a 

reliable estimation of the performance of a pricing scheme, the network operator 

needs to test the impact of the long-term uncertainty associated with a strategic 

planning demand scenario. A robust pricing scheme will give reliable evaluations 

when the realized strategic demand scenario differs from the forecasted strategic 

planning demand scenario. 

 This section describes the necessary assumptions and the method to test the 

robustness of a pricing scheme that is applied to evaluate the impact of long-term 

demand uncertainty on the StrT model.  

 The system performance measures are similar to the approach without 

long-term demand uncertainty. However, due to the added sampling method, mean 

and standard deviation results for all strategic system performance measures can 

be found. This work places emphasis on results obtained through the simulation 

approach: 𝑀(⨀𝐸) is the simulation-based expected 𝑇𝑆𝑇𝑇 including the impact of 

long-term planning demand scenario uncertainty, and 𝑆𝑇𝐷(⨀𝐸) is the long term 

standard deviation of the simulation-based expected total travel time. The mean 

value of ⨀𝑆𝑇𝐷 is a robust reflection of variation in the strategic demand scenario 

𝑇𝑆𝑇𝑇, while 𝑆𝑇𝐷(⨀𝑆𝑇𝐷) reflects the variation of the variation within future 

demand scenarios. 

 Finally, long-term measures of effectiveness are necessary. This study 

focuses on the change in ⨀𝐸 and  ⨀𝑆𝑇𝐷 between the “do nothing” StrUE scenario, 
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in which the long-term strategic demand is evaluated without tolls, and the 

strategic tolling scenario, StrT. The difference in travel time is denoted 

Δ(𝑀(⨀𝐸𝑆𝑡𝑟𝑈𝐸), 𝑀(⨀𝐸𝑆𝑡𝑟𝑇)) and the reduction in future system variation in travel 

time is denoted Δ(𝑆𝑇𝐷(⨀𝐸𝑆𝑡𝑟𝑈𝐸), 𝑆𝑇𝐷(⨀𝐸𝑆𝑡𝑟𝑇)). 

 The method for testing the robustness of a set of strategic marginal social 

cost based tolls follows: 

Algorithm 4.2: Long term uncertainty evaluation pseudo-code 

INPUT: 𝐴; 𝑔(𝐸𝑠, 𝐶𝑉𝑠); 𝑝𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐴; 𝑄 

 procedure  

1:     for 𝑖 = [1,2, … , 𝑄] do 

2:        𝐸𝑠
′ ←random sample from distribution Ω(𝜇Ω, 𝜃Ω) 

3:        𝑝𝑆𝑡𝑟𝑇
′ , ,⋄ 𝐸𝑆𝑡𝑟𝑈𝐸 ,⋄ 𝑆𝑆𝑡𝑟𝑈𝐸 ← solve_strategic(𝑔(𝐸𝑆

′ , 𝐶𝑉𝑆), “StrUE”); 

4:        ⨀𝐸𝑆𝑡𝑟𝑈𝐸 , ⨀𝑆𝑆𝑡𝑟𝑈𝐸 ← simulation sub-procedure(𝑝𝑆𝑡𝑟𝑇
′ ); 

5:        𝑅𝑆(⋄ 𝐸) ← 𝑅𝑆(⋄ 𝐸) ∪⋄ 𝐸,  

6:        𝑅𝑆(⨀𝐸) ← 𝑅𝑆(⨀𝐸) ∪ ⨀𝐸, 

7:        𝑅𝑆(⋄ 𝑆) ← 𝑅𝑆(⋄ 𝑆) ∪⋄ 𝑆, 

8:        𝑅𝑆(⨀𝑆) ← 𝑅𝑆(⨀𝑆) ∪ ⨀𝑆′ 

9:     end for 

 end sub-procedure 

OUTPUT: 𝑀(⋄ 𝐸), 𝑆(⋄ 𝐸),𝑀(⋄ 𝑆), 𝑆(⋄ 𝑆), 𝑀(⨀𝐸), 𝑆(⨀𝐸), 𝑀(⨀𝑆𝑇𝐷), 𝑆(⨀𝑆𝑇𝐷) 

 

This procedure reflects a robust evaluation that accounts for the long-term 

uncertainty in demand. Note that this procedure can be easily adapted to evaluate 

impact of long-term uncertainty in 𝑆𝑡𝑟𝑈𝐸 by setting network tolls Φ = 0, or in 

𝑆𝑡𝑟𝑆𝑂 by solving for the appropriate assignment pattern in Line 3. Additionally, 
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this procedure will sample from two distributions (both Ω and 𝑔), so it is critical 

that adequate 𝑄 and 𝑁 values are chosen to minimize sampling bias.  

3.4.1 Demonstration of long term demand scenario uncertainty  

The demonstration network from Section 3.3.3 is revisited in order to provide 

clarification between the impact of the day-to-day uncertainty resulting from the 

strategic approach, and the impact of long-term uncertainty in the strategic 

planning demand scenario. 

 The network parameters in Figure 3:2 remain the same, with the exception 

of 𝐸𝑆, which is no longer a known value. The future planning demand scenario in 

this demonstration has a mean of 𝜇Ω = 20 and 𝐶𝑉Ω = 0.2, therefore demand 

realization 𝜔~𝑁(20,4), and for this demonstration, 𝑄 = 1000. Procedure B was 

then implemented to obtain an evaluation of tolling scheme Φ that reflected the 

impact of long-term demand uncertainty.  

 Figure 3 shows the results from the varying 𝐶𝑉𝑆 experiment, however, now 

the impact of planning demand scenario uncertainty is accounted for. Again, 𝐶𝑉𝑆 

was varied from 0 ≤ 𝐶𝑉𝑆, ≤ 0.6 in increments of 0.05. 𝐶𝑉𝑆 is not affected by the 

uncertainty in the planning demand scenario. For each possible 𝐶𝑉𝑆 value, 

Procedure B was implemented to obtain 𝑀(⨀𝐸) and 𝑀(⨀𝑆𝑇𝐷) in the StrUE and 

StrT models. The horizontal axis of Figure 3 shows each possible 𝐶𝑉𝑆 value. The 

vertical axis of Figure 3(a) shows the values of travel time resulting from the long-

term planning demand scenario sampling, while the vertical axis of Figure 3(b) 
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shows the percentage reduction in 𝑀(⨀𝐸) and 𝑀(⨀𝑆𝑇𝐷) resulting from the 

presence of tolls.  

 

Figure 3:5 Results on the demonstration network under long term uncertainty:  
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Figure 3:6 Model evaluation under long term demand uncertainty: Expectation 

For the case of 𝐶𝑉𝑆 = 0.05, Figure 3(a) shows 𝑀(⨀𝐸𝑆𝑡𝑟𝑈𝐸) = 1411 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 

𝑀(⨀𝐸𝑆𝑡𝑟𝑇) = 1048 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. The difference between these two values is about 

25%, which is the Δ value shown by the blue bar for 𝐶𝑉𝑆 = 0.05 in Figure 3(b). 

Again for the case of 𝐶𝑉𝑆 = 0.05, a robust evaluation of the StrT model results in 

25% reduction in travel time and 54% reduction in standard deviation of travel 

time, as opposed to 30% and 65% respectively for the results without considering 

long-term uncertainty. 

 While Figure 3:6 shows similar behaviour to the results in Figure 3:4 

(showing the same experiment but without the added consideration of long-term 

uncertainty), they are not identical. This implies that a network operator should 
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not rely on a pricing scheme without evaluating its robustness using a method like 

Procedure B, lest system performance measures be overestimated. In addition, the 

unrealistic behaviour observed when 0.4 ≤ 𝐶𝑉𝑆 in Figure 4:3 is less prominent in 

Figure 4:5. 

 Figure 3:7 shows the long term standard deviation of the four metrics for 

the demonstration network. Once again, the horizontal axis shows 𝐶𝑉𝑠 varying in 

increments of 0.05 and the vertical axis shows Δ( ∙,∙) parameter that reflects the 

difference between the values from the StrT model and the StrUE model. 

 

Figure 3:7 Model under long term uncertainty: STD 
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In Figure 3:7, the ⋄ 𝑆𝑇𝐷 and ⨀𝑆𝑇𝐷 do not appear to have converged in the same 

manner. If the two measures were the same, then the long-term results would 

predict that all values have a similar standard deviation. The simulation procedure 

resulted in a greater reduction in performance metrics in the StrT model. In some 

cases the analytical results suggest that the ⋄ 𝑆𝑇𝐷 is not reduced at all. This is a 

non-intuitive result on the demonstration network. It is possible that this result is a 

reflection of computational significance. Investigating this measure on additional 

networks may shed light on this phenomenon. This is the topic of the next section. 

3.5 Model Demonstration 

Previous sections introduced the StrT model, a method for evaluating model 

performance under long term demand uncertainty, and demonstrations of each on 

a small network. This section scales the StrT model to the medium sized networks 

of Sioux Falls and Anaheim. Note that while the StrT model could be theoretically 

applied to networks such as the Gold Coast, the long term evaluation does require 

solving the model 𝑄 times (where Q needs to be a large number such as 1000) and 

therefore would be computationally prohibitive on a really large network. 

3.5.1 Results from evaluation of long term performance 

This section implements Algorithms 3.1 and 3.2 on the networks of Sioux Falls and 

Anaheim to demonstrate results and illustrate scalability of the proposed method. 

These are both well-known transportation network modelling test networks, the 

data for which was obtained from Bar-Gera (Bar-Gera, 2012). Sioux Falls consists of 
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24 nodes, 76 links, and 24 zones, while Anaheim consists of 416 nodes, 914 links, 

and 38 zones. All link parameters are as specified in known data, with the 

additional strategic demand parameter of 𝑔(𝑇: 360,600, 𝐶𝑉𝑆) and future planning 

scenario parameter of Ω(𝜔: 360,600,0.2) for Sioux Falls, and 𝑔(𝑇: 106176, 𝐶𝑉𝑆) and 

Ω(𝜔: 106176,0.2) for Anaheim. For these models, 𝑁 = 50,000 and 𝑄 = 1000. 

 The experiment varying 0 ≤ 𝐶𝑉𝑆 ≤ 0.6 in increments of 0.05 described in 

Sections 3.3.3 and Section 3.4.1 was repeated for both the case when not including 

long term planning scenario uncertainty, which yields performance measures 

Δ(⨀𝐸) and Δ(⨀𝑆𝑇𝐷) reflecting the reduction in system travel time due to the 

addition of the tolls. The same experiment varying 𝐶𝑉𝑆 was then repeated for 

Procedure B to illustrate the different values for effectiveness that might be 

obtained when the robustness of tolls is included in the evaluation. 

 Figures 3:8 – 3:13 shows the results of this experiment for Sioux Falls and 

Anaheim, where the evaluation resulting from day-to-day demand uncertainty only 

are compared with the results from the model evaluation when accounting for long 

term demand uncertainty. The results for E and for S are included. The horizontal 

axis in these figures shows the varying 𝐶𝑉𝑆 in increments of 0.05. The vertical axis 

in both figures then represents the Δ values.  
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Figure 3:8 Short term demand uncertainty tolling results: Sioux Falls 

 

Figure 3:9 Long term evaluation of Sioux falls results, M 
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Figure 3:10 Long term uncertainty of Sioux Falls, STD 

 

 

Figure 3:11 Anaheim network evaluation to day-to-day pricing scheme 
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Figure 3:12 Long term evaluation of Anaheim network, Δ𝑀  

 

 
Figure 3:13 Long term evaluation of S on Anaheim network 
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demand scenario uncertainty seems to underestimate system effectiveness. 

However, at larger values of 𝑪𝑽𝑺, the StrT model seems to dismantle and the results 

vary wildly. This may be an effect of sampling bias, but initial empirical observation 

indicates that the system performance can vary widely and model convergence is a 

complicated issue. Nonetheless, this outcome clearly shows that ignoring future 

planning scenario uncertainty can result in incorrect predictions of tolling scheme 

performance, and supports the need for further research. 

3.5.2 Results from average demand based tolls 

Figure 3:9 through Figure 3:13 shows the StrT model performance considering 

long-term demand scenario uncertainty; however, it is also important to consider 

the case where tolls are determined based on an average demand (i.e., short-term 

demand uncertainty is not included in the toll setting process). The same 

experiment from Section 5.1 was performed for the set of tolls determined based 

on deterministic conditions, assuming that 𝐶𝑉𝑆 = 0, representing the average 

demand. On the Sioux Falls and Anaheim networks, results for 𝑀(⨀𝐸) and 

𝑀(⨀𝑆𝑇𝐷) were similar for the cases where tolls were determined based on 

average demand versus strategic demand. However, the results for 𝑆𝑇𝐷(⨀𝐸), a 

measure of system volatility, differed substantially. In the Anaheim network, for the 

case of 𝐶𝑉𝑆 = 0.25, average demand tolls resulted in Δ(𝑆𝑇𝐷(⨀𝐸𝑆𝑡𝑟𝑈𝐸 , ⨀𝐸𝑆𝑡𝑟𝑇) =

75% and strategic demand tolls resulted in Δ(𝑆𝑇𝐷(⨀𝐸𝑆𝑡𝑟𝑈𝐸 , ⨀𝐸𝑆𝑡𝑟𝑇) = 62%, while 

Sioux Falls showed a similar pattern. These results illustrate that neglecting short-
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term demand uncertainty may result in an overestimation of toll performance with 

regards to system robustness.   

 Table 3-5 shows a sensitivity analysis comparing the analytical and 

simulation results on the Sioux Falls network, under long term demand scenario 

uncertainty (using Algorithm 3.2). The rightmost column indicates the 𝐶𝑉𝑠. Table 3-

5 shows the performance metrics, i.e., the amount the tolling scheme reduced the 

metric of interest. Table 3-6 shows the results where the tolling scheme was based 

on the average demand scenario, i.e., 𝐶𝑉𝑠=0.  

Table 3-5 Sioux Falls network: long term evaluation of StrT model 

 𝚫(𝑴(⋄ 𝑬)) 𝚫(𝑺𝑻𝑫(⋄ 𝑬)) 𝚫(𝑴(⋄ 𝑺)) 𝚫(𝑺𝑻𝑫(⋄ 𝑺)) 

0.1 0.9% -2.9% 3.0% -3.7% 

0.2 1.5% 1.2% 3.1% 1.3% 

0.3 2.2% -2.8% 3.2% -3.1% 

0.4 9.7% 9.2% 11.1% 9.3% 

 𝚫(𝑴(⨀𝑬)) 𝚫(𝑺𝑻𝑫(⨀𝑬)) 𝚫(𝑴(⨀𝑺)) 𝚫(𝑺𝑻𝑫(⨀𝑺)) 

0.1 5.5% 83.4% 10.6% 81.9% 

0.2 5.4% 80.2% 9.4% 78.8% 

0.3 5.0% 86.3% 7.4% 40.9% 

0.4 3.8% 68.1% 5.3% 13.6% 

 

Table 3-6 Sioux Falls network: long term evaluation of average demand results 

 𝚫(𝑴(⋄ 𝑬)) 𝚫(𝑺𝑻𝑫(⋄ 𝑬)) 𝚫(𝑴(⋄ 𝑺)) 𝚫(𝑺𝑻𝑫(⋄ 𝑺)) 

0.1 2.1% 3.7% 4.6% 3.5% 

0.2 0.9% 4.8% 2.7% 4.6% 

0.3 0.5% -3.8% 0.9% -4.2% 

0.4 1.6% 5.3% 2.1% 5.2% 

  𝚫(𝑴(⨀𝑬)) 𝚫(𝑺𝑻𝑫(⨀𝑬)) 𝚫(𝑴(⨀𝑺)) 𝚫(𝑺𝑻𝑫(⨀𝑺)) 
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0.1 5.2% 76.2% 10.1% 74.9% 

0.2 5.5% 76.2% 9.5% 75.0% 

0.3 3.2% 56.7% 4.5% 38.6% 

0.4 3.6% 63.3% 5.7% 37.3% 

 

3.6 Concluding Remarks 

This work introduced a strategic marginal social cost based pricing methodology. 

The strategic tolling model (StrT) approach accounts for the influence of day-to-day 

demand volatility on user route choice behaviour, and sets tolls such that users are 

“priced” for the marginal impact of their myopic route choice on system travel time.  

However, network operators must be aware of the additional uncertainty in 

the long term planning demand scenario; that is, a future strategic demand 

scenario realization in which the expected value of total trips 𝐸𝑆 differs from the 

forecasted value. A procedure to evaluate the robustness of a strategic pricing 

scheme was proposed. Initial results show that if both sources of uncertainty are 

not included in an evaluation of a strategic pricing approach, performance of a 

tolling scheme could be underestimated or overestimated, and it is not intuitive 

how the system will behave.  

This work contains an introduction to a strategic pricing approach, and has 

juxtaposed two sources of demand uncertainty in order to clearly differentiate 

between them. There are a number of research directions that emerge from the 

comparison. In particular, the use of two sampling distributions may result in 

unknown convergence behaviour that requires further investigation. Additionally, 
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the use of Bayesian statistical inference to describe the prior probability 

distribution of the strategic day-to-day travel demand may present an interesting 

avenue of research. Finally, the strategic pricing approach to the next-best pricing 

problem has been left for future research. 
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4.1 Introduction 

As previously discussed in Chapter 1, one of the primary purposes of transport 

planning models is the ranking and evaluation of infrastructure design projects. 

Planning tools, such as traffic assignment models based on the Wardropian 

equilibrium principle, can capture the effect that improvements in the network 

have on route choice in vehicle travellers. However, traditional models do not 

account for the inherent uncertainty in these methods, leading to an important 

question for researchers and practitioners alike: how do optimal project designs 

change in the face of non-deterministic network parameters? 

Uncertainties in network modelling are well-established phenomena in 

traffic settings, as evidenced by the multitude of literature reviewed in Chapter 2. 

However traditional equilibrium-based network design approaches are primarily 
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deterministic and therefore make a single prediction that is usually interpreted as 

an average, rather than any specific manifestation of network conditions. While 

there are important reasons to use such traditional models (model stability, 

uniqueness, tractability), this approach will almost certainly misrepresent real 

network conditions, particularly in networks that deviate significantly from the 

average. To complicate the matter, network assignment models are often used to 

evaluate the effects of changes in the network, such as infrastructure design. In 

such situations, deviant model behaviour is particularly important to capture due 

to its unpredictable impact on design projects. 

This chapter focuses on the network design problem (NDP) where the 

planner wishes to determine the optimal links to which to add capacity in order to 

improve a stated network performance measure while accounting for day-to-day 

network flow volatility. One of the difficulties in this problem arises in predicting 

vehicle user reactions to changes in network infrastructure. Additionally, NDP 

models must serve the varying, and at times opposing, needs of different users; 

planners are interested in the network from a macroscopic perspective, while daily 

travellers may view the transport system myopically, i.e., individual people just 

want to get to work on time. Viable NDP approaches need to provide reliable, cost 

effective, and equitable designs that consider the benefits and potential impacts 

from multiple perspectives. 
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This work applies the strategic assignment approach introduced in Chapter 

2, in which total travel demand in treated as a random variable. In this chapter, the 

uncertainty in day-to-day capacity is additionally considered. Day-to-day capacity 

applies the same concept of a demand that varies each day due to variations in 

factors such as user behaviour, except to capacity. The concept of link capacity is 

inherently a dynamic quantity that is adapted to static parameters for the time 

invariant traffic assignment problem. The concept of capacity may seem 

deterministic; a road can only hold a finite number of vehicles. However, static 

capacity is an agglomeration of density, the number of vehicles a road can contain 

at a given time, and flow, which is the number of vehicles that can flow through a 

road. This concept of static capacity is influenced by external factors such as 

weather, and also factors such as driver behaviour, the presence of parking, or even 

semi-recurrent incidents, such a driver double-parking to make a quick trip into the 

shops, or a delivery van blocking a lane. The idea of day-to-day capacity attempts to 

account for these random variations. 

This chapter implements the strategic user equilibrium with capacity 

uncertainty (StrUEC) introduced by Wen et al (2014). In the StrUEC model, link 

capacity is treated as an independent random variable with a known probability 

distribution. This work assumes that link capacity and demand are independent 

random variables, and that the capacity distribution on each link is independent 

from all other links. The StrUEC model will be described in more detail in Section 0. 
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Chapter 4 proposes a novel formulation for the NDP that integrates the 

strategic user equilibrium (StrUE) model to capture user behaviour in the face of 

day-to-day variation in demand and the strategic user equilibrium with capacity 

(StrUEC) model to represent the day-to-day variation in link capacity. Additionally, 

model results examine the impact of uncertain modelling parameters on design 

project selection and evaluation. Finally, designs are compared for a when the 

model includes demand uncertainty, capacity uncertainty, both source of 

uncertainty, or based on the StrUE, StrSO, or StrSR models.  

 
Figure 4:1 Summary of research contribution 

4.2 Background 

This work focuses on incorporating two sources of uncertainty into the network 

design problem. While accounting for different sources of uncertainty makes the 

NDP still more complex, it is essential that researchers develop approaches to 

quantify how those uncertainties impact infrastructure projects. However, network 

design models and algorithms have a rich history in the literature (Boyce & Janson, 

1980; Dantzig et al, 1979; Leblanc, 1975; Magnanti & Wong, 1984). As such an 

active field, only selected relevant works are discussed here; see Yang and Bell 

(1998) for an overview and historical developments, (Chen et al, 2011) for a review 

 

Novel formulation for the bilevel network design problem considering day-to-
day demand uncertainty and day-to-day capacity uncertainty; 

Comparison of project rankings on test networks 
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of uncertainty in the NDP specifically, and Wismans et al (2011a) for an in depth 

review of NDP applications using a dynamic approach.   

Most generally, network design is conceptually simple: the problem of 

finding the optimal location(s) to enhance a network given a limited “budget.” In 

this work, such enhancements are generally vehicle capacity improvements that 

can have a variety of interpretations, from the discrete additions (e.g., lanes, roads) 

to projects that may have a more continuous nature (e.g., optimized signal timing 

plans, other projects such as widening of shoulders, elimination of parking, etc).  

The NDP is traditionally formulated as a bi-level mathematical programming 

problem, where the upper level represents the “planner’s” perspective that 

measures the impact in the network due to the change, and the lower level 

represents the users’ reaction to those changes (Yang & Bell, 1998). Due to the 

nonconvex cost function resulting from the addition of capacity, the NDP can’t be 

solved by traditional optimization techniques and heuristic methods are necessary. 

A few previous examples of bilevel network design formulations include multi-

objective signal timing (Sun et al, 2003), accounting for long term demand 

uncertainty (Ukkusuri et al, 2007), total travel time reliability with stochastic route 

choice (Sumalee et al, 2006), optimal toll pricing strategies (Gardner et al, 2008a), 

examining the impact of environmental justice considerations (Duthie & Waller, 

2008), minimizing emissions (Ferguson et al, 2012; Sharma & Mathew, 2011), and 

health impacts (Jiang & Szeto, 2014).  
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 It is essential to account for uncertainty in in network design decisions, 

particularly because infrastructure project ranking is one of the primary purposes 

of network equilibrium models, like those outlined in Section 2.2. In fact, Lo and 

Tung (2003) approach the capacity reliability problem from the design perspective 

from the onset.  

 In other cases, equilibrium models are separately applied to the network 

design problem. Davis (1994) proposed a stochastic user equilibrium approach 

that leads to a more tractable model.   Chootinan et al (2005) propose a network 

design problem based on stochastic user equilibrium that maximizes capacity 

reliability. Sumalee et al (2006) propose a network design model maximizes the 

network reliability, which is the probability that the total travel time with be less 

than a threshold. They include error in user perception, and Poisson-distributed 

demand. Yin and Lawphongpanich (2007) propose a continuous network design 

approach where the demand belongs to a convex set, as opposed to a probability 

distribution. Ukkusuri and Patil (2009) network design that accounts for dynamic 

through the use of multiple periods and demand uncertainty and elasticity and 

furthermore emphasise the importance of flexibility in network investment 

decisions. Szeto et al (2010) propose a network design framework that 

incorporates change of land use over time.  

Uncertainty in transport network modelling is usually viewed as arising 

from demand, capacity, and user behaviour. Previous research has looked at the 
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strategic behaviour from users in terms of hyperpaths that are formed due to the 

possibility of being unable to enter capacitated links (Marcotte et al, 2004). The 

current work also employs strategic user behaviour in the sense that people will 

choose a route choice based on  a range of possible network conditions they may 

encounter during travel, but the underlying modelling approach is based on the 

strategic user equilibrium (StrUE) introduced by Dixit et al (2013). StrUE finds 

equilibrium flow proportions based on expected path costs, and is detailed in 

Section 2.3. The output from the strategic assignment approach is link volumes that 

will vary from day-to-day, thus accounting for short-term demand uncertainty that 

users face making day-to-day route choice decisions.  

 This work extends the strategic assignment model to form the subproblem 

for a network design scenario focused on link capacity additions. Previous work 

has examined the impact of short-term demand uncertainty and link capacity 

uncertainty, but less often in combination. Example include Lam et al (2008), who 

account for the impact of reliability considerations on user route choice due to 

variations in capacity and demand and the concept of an effective travel time, and 

Siu and Lo (2008), who propose an equilibrium formulation based on the travel 

time budget among heterogeneous commuters.  

 This work proposes a novel approach to address this gap.  
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4.3 Model Formulation 

This work captures users’ reactions to day-to-day demand uncertainty using the 

strategic assignment model described in Chapter 3. However, the “capacity” of links 

as employed by most static traffic assignment approaches is another non-

deterministic quantity that users consider when selecting a route and should be 

included in the evaluation design projects. Therefore, Section 4.3.2 describes the 

strategic behaviour approach that also accounts for the variability in capacity. 

Finally, Section 4.3.3 formulates the bilevel network design model incorporating 

strategic route choice assignment. 

4.3.1 Strategic user equilibrium (StrUE) model 

For completeness, the StrUE model is briefly recounted here. StrUE is a novel traffic 

assignment model that seeks to capture the day-to-day volatility in traffic flow by 

assuming that users choose a minimize expected cost route; however, the actual 

experienced cost of a route depends on the number of people who choose to travel 

on any given day, which is a random variable with a known probability 

distribution. The strategic concept is simple, but powerful; the model introduces 

variability of link flow while maintaining the ability to scale up to large size 

networks. The mathematical formulation is recounted below. 

The notation previously introduced is recounted here. Consider a directed 

graph 𝐺 = (𝑉, 𝐴) where 𝑉 is the set of nodes (vertices) and 𝐴 is the set of links 
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(edges), where an individual link is indexed by 𝑎. Let 𝑟 ∈ 𝑅 index an origin and 

𝑠 ∈ 𝑆 index one destination from the set of destinations. Let 𝑊 be the set of origin-

destination pairs connecting origins 𝑟 with destinations 𝑠, where 𝑞𝑟𝑠 indicates the 

proportion of total demand between origin 𝑟 and destination 𝑠. The total demand is 

a random variable 𝑇 with associated probability distribution 𝑔(𝑇). The travel cost 

on a link is 𝑡𝑎(𝑝, 𝑇), which is a function of the proportion of the total flow on the 

link 𝑝𝑎: ∑ 𝑝𝑎 = 1𝑎∈𝐴 , and 𝑇. Furthermore let 𝐾𝑟𝑠 be the set of paths connecting 

origin 𝑟 and destination 𝑠, and let 𝑓𝑘
𝑟𝑠 represent the proportion of the total travel 

demand on that path. Finally, let 𝛿𝑎,𝑘
𝑟𝑠  be the incidence matrix that is equal to 1 if 

link 𝑎 is on path 𝑘 between origin 𝑟 and destination 𝑠 and 0 otherwise. The StrUE 

model as previously introduced may then be written as: 

minimize ∫ ∑ ∫ 𝑡𝑖𝑗(𝑤𝑇)
𝑝𝑖𝑗

0(𝑖,𝑗)∈𝐴

∞

0

𝑔(𝑇)𝑑𝑤𝑑𝑇 (4.1) 

subject to   

∑ 𝑓𝑘
𝑟𝑠

𝑘

= 𝑞𝑟𝑠 ∀𝑟 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆 (4.2) 

𝑓𝑘
𝑟𝑠 ≥ 0 ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾 (4.3) 

𝑝𝑖𝑗 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑖𝑗,𝑘

𝑟𝑠

𝑘∈𝐾𝑠∈𝑆𝑟∈𝑅

 ∀(𝑖, 𝑗) ∈ 𝐴 (4.4) 
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The StrUE model formulation provides a straightforward framework that can be 

applied to practically sized problems by modifying well established solution 

methods. As discussed in Section 2.3, to ensure uniqueness of link flows, for each 

origin-destination, path flow proportion is assumed to be equal under all demand 

scenarios. Therefore, the equilibrium flow on each path will vary in a proportional 

manner when the total origin-destination demand varies. The system performance 

metrics in the strategic approach can be found through analytical derivations or 

simulation-based sampling methods, and will be detailed in the next section.  

4.3.2 Strategic user equilibrium with capacity uncertainty model 

In both the deterministic approach and the StrUE model, capacity serves as a model 

input and assumed to be a fixed value. Capacity is inherently a static representation 

of a dynamic concept. It is often intended to be a proxy to capture the effects of 

congestion, where the travel time increases as the ratio of flow to capacity on a link 

increases. In spite of this, the capacity of a road will fluctuate due to factors such as 

driving behavior and adverse weather conditions, phenomena that is captured in 

this work by the concept of “day-to-day” capacity. Drivers may consider this 

fluctuating capacity when making route selections; therefore, it is important to 

consider its impact on network design project rankings. 

 The StrUEC model, introduced by Wen et al (2014), accounts for the day-to-

day volatility in capacity and vehicle users’ reaction to knowledge of that volatility. 
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The StrUEC approach assumes that the inverse capacity 𝐶𝑖𝑛𝑣,𝑎 on each link is a 

random variable with a known probability distribution ℎ𝑎(𝐶𝑖𝑛𝑣). Vehicle users have 

knowledge of the capacity distribution on all links and choose the expected least 

cost route, where the expected cost is based on the probability distribution of both 

the demand and the capacity distribution on each link. Wen et al show the 

uniqueness of the model assignment solution. 

Continuing the notation previously introduced, the StrUEC model seeks the 

set of link flow proportions that satisfy the mathematical program in Equation 

(4.5). The difference between the objective function for the StrUE model in (4.1) 

and the StrUEC model in (4.5) is that the expected cost is now a function of flow 

proportion, total demand, and link capacity.  

minimize 𝑧𝐶(𝑝)

= ∫ ∫ ∑ ∫ 𝑡𝑖𝑗(𝑤, 𝑇, 𝐶𝑖𝑛𝑣)
𝑝𝑖𝑗

0(𝑖,𝑗)∈𝐴

∞

0

𝑔(𝑇)ℎ𝑖𝑗(𝐶𝑖𝑛𝑣)𝑑𝑤𝑑𝐶𝑖𝑛𝑣,𝑖𝑗𝑑𝑇
∞

0

 (4.5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

Constraints [2] – [4]  

In traditional network design, the capacity of a link is increased in vehicles per 

hour, which will lower total system travel time and make the link more attract to 

drivers. However in network design with uncertain capacity, the expected capacity 

of the link, which is one of the parameters of the distribution of the link capacity 
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ℎ𝑖𝑗(𝐶𝑖𝑛𝑣), is increased because capacity is not a deterministic quantity. There might 

be other possibilities where the coefficient of variation or the variance of the 

capacity is decreased (for example policy targeting illegal parking practices). For 

simplicity, the most straightforward interpretation is utilized in this work. 

Alternate possibilities will be the topic of future research.  

4.3.3 Network design formulation 

The network design problem with uncertainty is formulated as a bilevel nonlinear 

mathematical programming problem.  The upper level seeks to minimize the 

planning objective accounting for volatility in the network, for example, expected 

total system travel time or standard deviation of travel time, both of which are a 

function of proportion of flow on each link and capacity changes in the 

transportation network. The lower level represents drivers’ reactions to changes in 

the road network, modelled by the StrUE or StrUEC approaches presented in 

Section 3.1 and 3.2. 

 This work focuses on ranking and evaluating design projects in a traffic 

network, although principles similar to those discussed here would apply to other 

NDP applications. Let 𝑆 be a predetermined set of possible network design 

scenarios indexed by 𝑠, each of which is defined by the amount of capacity or 

expected capacity 𝜌 to add to some number of links such that the total cost of 

improving the links is below the budget 𝐵 in order to minimize objective 𝑤 ∈ Ω. 𝛿𝑖𝑗
𝑠  
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is a binary decision variable equal to 1 if link (𝑖, 𝑗) is an optimal location to add 

capacity in project scenario 𝑠. Note that links which are not available to be 

improved by the amount 𝑝 ∈ 𝑃𝑆 will be constrained such that 𝛿𝑖𝑗
𝑠 = 0.  Additionally, 

the binary constraint on 𝛿𝑠 could be relaxed, in which case this would be a 

continuous network design formulation. The binary approach was utilized here 

because it puts realistic bounds on the solution space, which is already quite large. 

 The upper level problem represents the “planner’s” perspective, who seeks 

the optimal links to which to add capacity for each design scenario in order to 

minimize an objective 𝑠𝐵,𝑝
𝑤 . The upper level decision variables also impact the lower 

level problem, which is the strategic traffic equilibrium approach that accounts for 

different sources of network uncertainty.  For each design scenario 𝑠𝐵,𝑝
𝑤 , the 

formulation to minimize the objective 𝑤 follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤 (4.6) 

subject to  

∑ 𝜌𝛿𝑖𝑗
𝑠 ≤ 𝐵𝑠

(𝑖,𝑗)∈𝐴

 (4.7) 

𝛿𝑖𝑗
𝑠 ∈ {0,1}   ∀(𝑖, 𝑗) ∈ 𝐴 (4.8) 

subject to  
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𝑆𝑡𝑟𝑈𝐸 𝑜𝑟 𝑆𝑡𝑟𝑈𝐸𝐶  

The defining point of this formulation is which objective function should be utilized 

for Equation (4.6). There are two basic system objectives that are of interest in this 

work: expected total system travel time 𝐸 and the standard deviation of total 

system travel time 𝑆𝑇𝐷. Due to the assumptions in the strategic assignment model, 

there are two approaches to solving for these objective measures. The first is to use 

the analytical equations that are derived based on a travel cost function and the 

distribution of the random variables. The expression for ⋄ 𝐸, which was introduced 

in Duell et al (2014), is shown in Equation (4.9). 

⋄ 𝐸 = ∫ ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝛿𝑠)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

∞

0

 (4.9) 

The analytical expression for the total system travel time where link inverse 

capacity is a random variable given in Equation (4.10).  

⋄ 𝐸𝐶 = ∫ ∫ ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝐶𝑖𝑛𝑣, 𝛿𝑠)ℎ𝑖𝑗(𝐶𝑖𝑛𝑣)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

∞

0

∞

0

 (4.10) 

Note that in this work, the ⋄ symbol indicates that a quantity is analytically derived, 

as opposed to using a simulation procedure that involves sampling from the 

distribution of the random variable, which is denoted as ⨀. The simulation based 

expected total system travel time is ⨀𝐸 and ⨀𝑆. A simulation based procedure may 

be necessary for cases where no analytical form exists. A procedure to determine 

the simulation values was provided in Algorithm 2.3. 
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 The standard deviation of total system travel time is denoted as ⋄ 𝑆𝑇𝐷, and 

it is the expected value of the square of the total system travel time minus the 

square of the expected value of total system travel time. Note that expectation is 

denoted 𝐸𝑥(𝑋) in this work. Equations (4.11) and (4.12) contain the ⋄ 𝑉 for StrUE 

and StrUEC models respectively. 

⋄ 𝑉 = 𝐸𝑥𝑇 (( ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝛿𝑠)

(𝑖,𝑗)∈𝐴

)

2

) − (𝐸𝑥𝑇 ( ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝛿𝑠)

(𝑖,𝑗)∈𝐴

))

2

 (4.11) 

⋄ 𝑉𝐶 = 𝐸𝑥𝑇,𝐶(𝑖𝑗) (( ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝐶(𝑖𝑗)𝑖𝑛𝑣, 𝛿𝑠)

(𝑖,𝑗)∈𝐴

)

2

)

− (𝐸𝑥𝑇,𝐶(𝑖𝑗) ( ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝐶(𝑖𝑗)𝑖𝑛𝑣, 𝛿𝑠)

(𝑖,𝑗)∈𝐴

))

2

 

(4.12) 

 

The next section outlines the assumptions to provide tractable forms of Equations 

(4.9) – (4.12), as well as the solution method for the bilevel program proposed in 

Equations (4.6) – (4.8). 

 In order to evaluate a design scenario, this work employs two performance 

metrics to measure the relative impact of each design scenario. For the 

performance metrics, Δ(∙,∙) is used to indicate the percentage difference between 

two quantities. The decrease in expected total system travel time is the percentage 

difference between the 𝐸0, the system travel time in the base case with no design 
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changes, and 𝐸𝑠, the expected system travel time that results from design scenario 

𝑠, with the same principle applying to the case of ⋄ 𝑆𝑇𝐷.  

Δ𝐸𝑠 =  Δ(⋄ 𝐸𝑠,⋄ 𝐸0) = 1 −
𝐸𝑠

𝐸0
 (4.13) 

𝛥𝑆𝑇𝐷𝑠 = Δ(⋄ 𝑆𝑇𝐷𝑠,⋄ 𝑆𝑇𝐷0) = 1 −
𝑆𝑇𝐷𝑠

𝑆𝑇𝐷0
 (4.14) 

4.4 Solving the Model 

This section details the assumptions and methodology to solve the bilevel network 

design model presented in Section 4.3.3. The upper level of the model is solved 

using a heuristic based on natural evolution known as a genetic algorithm. The 

strategic assignment submodel presented in Sections  4.3.1and 0 is solved using a 

straightforward approach based on the well-known Frank Wolfe method. 

Additionally, the strategic assignment approach both with and without capacity 

uncertainty both require a number of assumptions in order to provide a tractable 

form of the model to solve analytically. All solution methods and assumptions are 

detailed Sections 4.4.1-4.4.3. 

4.4.1 Strategic assignment model 

In order to solve the strategic assignment model, as in Chapters 3 and 4, this 

approach assumes a lognormal distribution for the total travel demand with 

random variable 𝑇~𝐿𝑁(𝐸𝑠𝑡𝑟 , 𝐶𝑉𝑠𝑡𝑟), where 𝐸𝑆𝑡𝑟  is the total expected demand, the 



 

126 

𝐶𝑉𝑠𝑡𝑟is the coefficient of variation of total trips, and that the OD demand follows 

fixed, specified proportions. Travellers make their route choices based on 

knowledge of the distribution and the resulting expected travel costs.  In order to 

solve the StrUE and StrUEC models that are the subproblem of this work, we 

assume that travel cost varies with flow according to a variation of the BPR 

function, where flow is a function of link proportion 𝑝𝑖𝑗 and the random variable for 

total demand 𝑇: 

𝑡𝑖𝑗(𝑝, 𝑇) = 𝑡𝑖𝑗
𝑓

(1 + 𝛼 (
𝑝𝑖𝑗𝑇

𝑐𝑖𝑗 + 𝛿𝑖𝑗
𝑠 𝑛𝑠

)

𝛽

) (4.15) 

Where 𝑡𝑖𝑗
𝑓

 is the free flow travel time on link 𝑎, 𝑐𝑎 is the capacity, 𝛼 and 𝛽 are BPR 

shaping parameters that are commonly assumed to be 0.15 and 4, respectively. For 

simplicity, this work assumes that the 𝛼 and 𝛽 parameters in the BPR function are 

the same on every link. The flow proportion on each link 𝑝𝑖𝑗is an output from 

solving the StrUE model. The StrUE model assumes that users will choose the 

expected shortest cost path, where the expected link cost is can be derived as in 

Equation (4.7). 

𝐸𝑖𝑗(𝑝, 𝑇) = ∫ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝𝑇)𝑔(𝑇)𝑑𝑇

∞

0

= 𝑡𝑖𝑗
𝑓

(1 + 𝛼 (
𝑝𝑖𝑗

𝑐𝑖𝑗
)

𝛽

𝑀𝛽) (4.16) 

Where 𝑀 is the analytical moment of the demand distribution that is found as: 
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𝑀𝛽 = 𝑒𝛽𝜇+
1
2

𝛽2𝜎2

 (4.17) 

The expected total system travel time is an important metric for planners, 

especially for the ranking of design projects. For simplicity, unless stated otherwise, 

we assume the link capacity 𝑐𝑖𝑗 includes the additional projects and will leave out 

the 𝛿𝑖𝑗
𝑠 𝑛𝑠  from the travel cost function. Using the Equations 10 and 14, the ⋄ 𝐸can be 

calculated as: 

⋄ 𝐸 = ∫ ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

∞

0

= ∑ (𝑡𝑖𝑗
𝑓

𝑝𝑖𝑗𝑀1 + (
𝛼𝑡𝑖𝑗

𝑓

𝑐𝑖𝑗
𝛽

) 𝑝𝑖𝑗
𝛽+1

𝑀𝛽+1)

(𝑖,𝑗)∈𝐴

 

(4.18) 

In order to aid with the presentation of system performance metrics, consider the 

two parts of total system travel time as that resulting from sum of the free flow 

travel time on each link 𝐹 and that resulting from the sum of the delays on each 

link, 𝐷. 

𝐹 = ∑ 𝑡𝑖𝑗
𝑓

𝑝𝑖𝑗

(𝑖,𝑗)∈𝐴

 (4.19) 

𝐷 = ∑ (
𝛼𝑡𝑖𝑗

𝑓

𝑐𝑖𝑗
𝛽

)

(𝑖,𝑗)∈𝐴

𝑝𝑖𝑗
𝛽+1

 (4.20) 

Using this notation, the expected total system travel time can then be written as:  

⋄ 𝐸𝑠𝑡𝑟 =  𝐹𝑀1 + 𝐷𝑀𝛽+1 (4.21) 
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The standard deviation is more complex because we need to find the expected 

value with respect to the total demand 𝑇, of the sum of link travel times squared. 

However, assuming that 𝑇 is (so the power of 𝛽 is the same on all links), then the 

total trips 𝑇 can be factored out and the standard deviation calculated by summing 

each different quantity on each link, and then computing the final expression 

presented in Equation (21). 

⋄ 𝑉 = 𝐹2𝑀2 + 𝐷2𝑀2𝛽+2 + 2𝐹𝐷𝑀𝛽+2 − (𝐹𝑀1 + 𝐷𝑀𝛽+1)
2

 (4.22) 

⋄ 𝑆 = √⋄ 𝑉 (4.23) 

While ⋄ 𝑆 is somewhat nonstandard, it can still be calculated relatively easily using 

a single pass through the array of links. Next we consider the differences in 

calculating strategic model performance metrics when including link capacity as a 

random variable. 

4.4.2 StrUEC model assumptions 

Additionally, this work considers the model in which capacity is a random variable 

that users consider for when making a route choice decision. In order to capture 

the variation in day-to-day capacity, we assume that capacity follows a gamma 

distribution. The inverse of capacity therefore follows an inverse gamma 

distribution 𝐶~𝐼𝑛𝑣_Γ(𝑘,
1

𝜃
), where 𝑘 and 𝜃 are the distribution shaping and scaling 
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parameters respectively and specific to link 𝑎. Assume that the expected capacity 

on a link is 𝑐𝑖𝑗, and the standard deviation is 𝑐𝑖𝑗
𝑠𝑡𝑑 . Furthermore, we assume that 

capacity distributions of each link are independent from one another and 

independent from the demand. 

 As input to the StrUEC model we consider the coefficient of variation on link 

𝑖𝑗 as 𝑐𝑜𝑣𝑖𝑗 = (
𝐶𝑖𝑗

𝑠𝑡𝑑

𝐶𝑖𝑗
) and we calculate the link distribution parameters as: 

𝑘𝑖𝑗 =  
𝑐𝑖𝑗

𝜃𝑖𝑗
  =

1

𝑐𝑜𝑣𝑖𝑗
2   

 (4.24) 

𝜃𝑖𝑗 =
𝑐𝑖𝑗

𝑘𝑖𝑗
= 𝑐𝑖𝑗 × 𝑐𝑜𝑣𝑖𝑗

2  (4.25) 

When capacity is a random variable, the expected cost can be rewritten using the 

moment of the link specific capacity distribution, first presented in Wen et al 

(2014). 

𝐸𝑖𝑗(𝑝, 𝑇) = ∫ ∫ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝐶𝑖𝑛𝑣)ℎ𝑖𝑗(𝐶𝑖𝑛𝑣)𝑔(𝑇)𝑑𝑇

∞

0

∞

0

= 𝑡𝑖𝑗
𝑓

(1 + 𝛼𝑝𝑖𝑗
𝛽

𝑀𝛽𝐿𝑖𝑗,𝛽) 

(4.26) 

Where 𝐿𝑖𝑗,𝛽 is the 𝛽𝑡ℎ moment of the inverse gamma link capacity distribution that 

is computed as: 

𝐿𝑖𝑗,𝛽 =
1/𝜃𝛽

∏ (𝑘 − 𝑛)𝛽
𝑛=1

 (4.27) 
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Note that this definition does place constraints on the feasible values of 𝑐𝑜𝑣𝑖𝑗 . 

⋄ 𝐸𝐶 = ∫ ∫ ∑ 𝑝𝑖𝑗𝑡𝑖𝑗(𝑝, 𝑇, 𝐶𝑖𝑛𝑣)ℎ𝑖𝑗(𝐶𝑖𝑛𝑣)𝑔(𝑇)𝑑𝑇

(𝑖,𝑗)∈𝐴

∞

0

∞

0

= ∑ (𝑡𝑖𝑗
𝑓

𝑝𝑖𝑗𝑀1𝐿𝑖𝑗,1 + 𝛼𝑡𝑖𝑗
𝑓

𝑝𝑖𝑗
𝛽+1

𝑀𝛽+1𝐿𝑖𝑗,𝛽)

(𝑖,𝑗)∈𝐴

 

(4.28) 

 

Again, the system performance metrics of interest are the analytical total system 

travel time ⋄ 𝐸𝐶  and analytical standard deviation of total system travel time ⋄ 𝑆𝐶 , 

where the subnote 𝐶 indicates metrics from the StrUEC model. In order to aid with 

the presentation of metrics, consider the two parts of the travel cost function, 

where 𝐹 remains the same. However, the link capacity distribution is link specific 

and therefore stays inside of summation. 

𝐷𝐶 = ∑ 𝛼𝑡𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐴

𝑝𝑖𝑗
𝛽+1

𝐿𝑖𝑗,𝛽 (4.29) 

Using the short hand notation, the analytical total system travel time for the StrUEC 

model may be calculated as: 

⋄ 𝐸𝐶 = 𝐹𝑀1 + 𝐷𝐶𝑀𝛽+1 (4.30) 

The derivation of standard deviation from Equation (14) is more algebraically 

demanding. In this case, the expected value is with respect to either 𝑇 or 𝐶𝑖𝑛𝑣(𝑖𝑗), so 

most of the travel cost function can be treated as constants and integrated 



 

131 

appropriately. For clarity, we factor out the constant part of each link specific 

quantity attributed to the delay as 𝐷𝑖𝑗: 

𝐷𝑖𝑗 = 𝑡𝑖𝑗
𝑓

𝛼𝑝𝑖𝑗
𝛽+1

 (4.31) 

Finding the expected value of the square of a summation over each link is less 

straightforward. In the demand case, we assume that 𝑇 is not link specific and 

therefore even when it is multiplied together in the sum, it factors out. However in 

the case of Equation (4.28), when the summation of the travel time over each link is 

squared, the capacity random variable on each link must be multiplied by the 

capacity random variable on every other link, after which the expected value is 

calculated. Equation (4.32) shows this term. 

𝐷𝐶,2 = ∫ ∫ ( ∑ 𝐷𝑖𝑗𝑇𝛽𝐶𝑖𝑛𝑣
𝛽 (𝑖𝑗)

(𝑖,𝑗)∈𝐴

)

2
∞

0

∞

0

𝑔(𝑇)ℎ𝑖𝑗(𝐶𝑖𝑛𝑣)𝑑𝐶𝑖𝑛𝑣(𝑖𝑗)𝑑𝑇 (4.32) 

Using the property that for independent, real value variables, 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌) 

and ordering the links in a “list”, it is still relatively simple to calculate this value. 

Using manipulation to arrange the equation in a form that is easy to compute, the 

squared part of the system “delay” can be found as: 

𝐷𝐶,2 =  ∑ (𝐷𝑖𝑗𝐿𝑖𝑗,2𝛽 + 2 ∑ 𝐷𝑚𝑛𝐷𝑖𝑗𝐿𝑚𝑛,𝛽𝐿𝑖𝑗,𝛽 

𝑚𝑛<𝑖𝑗

(𝑚,𝑛)=1

)

(𝑖,𝑗)∈𝐴

  (4.33) 

Therefore the ⋄ 𝑆𝑇𝐷𝐶  is calculated as: 
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⋄ 𝑉𝐶 = 𝐹2𝑀2 + 𝐷𝐶,2𝑀2𝛽+2 + 2𝐹𝐷𝐶𝑀𝛽+2 − (𝐹𝑀1 + 𝐷𝐶𝑀𝛽+1)
2

 (4.34) 

⋄ 𝑆𝑇𝐷𝐶 = √⋄ 𝑉𝐶 (4.35) 

4.4.3 Solving the design problem 

The network design problem as formulated in Section 4.4.3 cannot be solved to a 

guaranteed global optimal value using standard optimization techniques because of 

the non-convex cost function (Equation (4.15)). Therefore heuristic solution 

methods are necessary. This work applied a genetic algorithm, an optimization 

technique inspired by principles of natural evolution. GAs provide a flexible, 

rigorous framework to solve challenging optimization problems, and are a 

relatively common research method to solve the bi-level traffic network design 

problem. Karoonsoontawong and Waller (Karoonsoontawong & Waller, 2006) 

showed that in terms of heuristic approaches to solve the continuous NDP, GAs 

perform better than simulated annealing or random search algorithms. A GA will 

correctly identify local extrema, but as is the case with all heuristics, the solution is 

not guaranteed to be the global optimal value. In this approach, steps were taken to 

ensure that the GA had converged on the best solution. 

A GA locates an optimal solution by searching for promising regions in 

which there are a high proportion of “good” solutions. It begins with a randomly 

generated initial population of individuals that represent potential solutions (called 
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chromosomes). Over “time”, the population evolves according to a natural selection 

process, in which the best individuals are selected and combined using a crossover 

technique to form new populations of individuals. Table 4-1 summarizes the 

terminology used in genetic algorithms. The procedure for a genetic algorithm is 

described in more detail below. 

Table 4-1 Summary of genetic algorithm terms and problem-specific 
representation 

Term Explanation in GA context 
Representation in the Chapter 4 

Application 

GA variable 

The quantities that the GA changes to 

find better solutions, which the GA 

represents as binary numbers 

A binary variable representing whether to 

add 𝑛 capacity to a link 

Chromosome 
Possible solution consisting of a set of GA 

variables 

Represents a possible design scenario, 

where each “1” indicates that capacity is 

added to that link 

Generation An iteration of the algorithm 

A complete cycle of performing each GA 

procedure a single time, including: solving 

a Frank Wolfe assignment for each new 

chromosome, crossover, and mutation 

Population 
The set of chromosomes at any given 

generation 

The set of all design scenarios that the GA 

is currently testing 

Fitness 

The measure of how “good” a 

chromosome is in terms of minimizing 

the objective function 

The expected total system travel time ⋄ 𝐸𝑠 

associated with a particular design 

scenario 

Crossover 

A GA procedure to find new solutions 

based on the evolutionary equivalent of 

“breeding” 

Using a binary representation 

Mutation 

A GA procedure that also finds new 

solutions, based on the evolutionary 

equivalent 

Randomly changes a design plan such that 

capacity is added or not added to a link 

Mutation rate 
The probability that each bit of the 

binary chromosome representation  
Mutation rate = 0.001 
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The fitness evaluation procedure provides a means to judge how “good” each 

chromosome is in terms of minimizing the specified objective of total travel time or 

variation of travel time. The GA uses this fitness score to provide a search direction. 

As a chromosome represents a possible design plan, its fitness is obtained by 

solving an instance of StrUE, resulting in values for ⋄ 𝐸 and ⋄ 𝑆.  The crossover 

procedure and the mutation procedure are the methods used by the GA to find new, 

better solutions. The crossover procedure begins by eliminating a percentage of the 

population as specified by the input culling percentage. The “weakest” members of 

the population are deleted, here represented by chromosomes with the highest 

total delay or total emissions value (depending on the objective). To generate new 

chromosomes, two chromosomes from the remaining population are randomly 

selected to be “parents”. Two “child” chromosomes are created by taking half of the 

binary representation of each parent to form a new number for each of the GA 

variables. This procedure requires the culling percentage as an input from the user. 

Similar to the principles of natural biology, the mutation process maintains 

diversity in a population and again helps with the search direction of the algorithm. 

As a general rule, the crossover procedure explores the “nearby” solution space, 

while mutations help explore further away. 

This work utilized a single-objective binary-coded variation of the 

nondominant sorting genetic algorithm II (NSGA-II) by Deb (2002). NSGA-II is a 

well-known algorithm that has proven to be the best GA tool for solving multi-
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objective optimization problems, and utilizes several techniques that provide 

superior performance.  

An important aspect of using a GA as a solution method is how the problem 

variables are represented. As in previous applications, this work uses a “binary” 

approach in order to limit the feasible solution space. Each “chromosome” is 

specified to have as many bits as there links in the network. Then a “0” represents 

the decision not to add capacity to a link and a “1” means to add capacity (where 

the amount of capacity to add is a model input). In general, GAs perform better 

without constraints. However, a constraint was unavoidable in this application due 

to the fact that we consider the cost of adding capacity to a link to be related to the 

length of the link. We avoided the use of a penalty function by initializing each 

population (set of GA chromosomes) to be feasible. A GA relies on crossover and 

selection procedures to explore the solution space. However, for binary approaches 

where the solution contains many more 0’s than 1’s, there is a much higher 

probability that crossover or selection will result in infeasible solutions. This issue 

was addressed by running the GA for more generations to give it more time to 

explore the solution space. A crossover probability of 0.9 and a mutation 

probability of 0.001 were used in this work. 

 Algorithm 4.1 provides a more methodological outline of the GA procedure 

as utilized in this chapter. 
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Algorithm 4.1: Genetic Algorithm Pseudocode 

INPUT: 𝑃𝑆 (population size), crossover probability, mutation 
probability, 𝐼 (number of generations), 𝑅𝑆 (random seed) 

 procedure GA(𝑠𝑝,𝑛
𝑤 ) 

1: 2  𝑃(𝜙) = initialize_population(RS,PS); 

2: 3 while generation 𝑖 < 𝐼 do 

3: 4 for ∀𝜙 ∈ 𝑃 do 

4: 5 ⋄ 𝐸𝜙,⋄ 𝑆𝑇𝐷𝜙 ← solve_strategic(𝑠𝑝,𝑛
𝑤 ,StrUE,𝜙𝑠); 

5: 6 end for 

6: 7 rank chromosome fitness by objective 𝑤; 

7: 8 crossover_procedure(crossover probability); 

8: 9 mutation_procedure(mutation probability); 

9:  increment 𝑖; 

10:  end while 

11: 1 return 𝜙𝑠
∗; 

 end procedure 

OUTPUT: optimal design scenario 𝜙𝑠
∗ 

 

The genetic algorithm in this chapter implemented an adapted the original code by 

Deb, which is available online (and written in the C programming language, which 

can also be complied using C++ compilers). Changes to the code include the 

function to initialize the population to a feasible solutions, and variations that 

adapted the crossover and mutation procedures to maintain feasibility. The 

interface between the strategic code that was also used for Chapters 3 and 4 and 

the genetic algorithm was programmed using the C++ language. As indicated in 

Algorithm 5.1, the GA primarily operated as a separate function. However, a small 

interface between the GA and StrUE was needed in order to test the fitness of each 
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chromosome, where the set of link capacities are adjusted to match the GA 

variables of a design plan chromosome. 

4.5 Results and Discussion 

This section demonstrates the NDP model accounting for strategic user behaviour 

and discusses the implications for planning for uncertainty in transport networks. 

The GA is used to solve a variety of design scenarios. Results are presented for a 

small network in order to demonstrate the model and then on a slightly larger 

network where more rerouting effects can be captured. Three modelling 

approaches are compared: StrUE, StrUEC, and a deterministic UE approach. 

 In the design scenarios, there are three sets of input parameters that can be 

changed: the total budget, the cost of building on a link, the amount to be added to 

the link (in the binary relaxation). The user inputs regarding the demand are: the 

expected value of total trips, and the coefficient of variation of the demand 

distribution. Networks with a higher degree of fluctuation in the realized demand 

will have a higher 𝐶𝑉𝑆𝑡𝑟 . The link capacity follows an inverse gamma distribution, 

where for each link, the primary input is the expected value of the capacity for each 

link and the coefficient of variation for each link. 

 In the strategic assignment network design application, the planner seeks to 

rank and compare different design scenarios, indexed by 𝑠𝐵,𝑝
𝑤 ∈ 𝑆. In this 

experiment, the objective is 𝑤 =⋄ 𝐸, and we focus on the case where 𝑝 = 1,500 𝑣𝑝ℎ. 
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Lacking the appropriate data, we assume that the cost to add capacity to each link 

is equivalent to the length of that link. Essentially, this captures the fact that the 

cost to add capacity to all links is not equivalent, but links that are longer will cost 

more to enhance their vehicle capacity. If the cost is $10M/km, then a budget of 10 

is a proxy for $100M budget. 

4.5.1 Determining link capacity coefficient of variation 

Due to a lack of real world data regarding the day-to-day capacity of links in a 

network, this thesis compares six different methods that may capture different 

aspects of real networks. These methods are: capacity normalised variability, high 

variability on congested links, high variability on links with greater capacity, 

identical variability on all links, random variability on all links, and normally 

distributed variability on all links. Each method is further detailed below. 
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Table 4-2 Methods of generating coefficient of variation for all links in the network 

Method 
 

Explanation 

Congested CON 
the links with the highest (or lowest) 
congestion have higher CV 

Capacity CAP 
the links with the highest (or lowest) 
capacity have the larger CV 

Distribution DIST 
link cv is sampled from a specified 
distribution (i.e., uniform or normal) 

Normalized NORM 
link capacity is normalized to a range 
specified by the user 

Identical ID all links have the same CV 

 

For a number of methods, it is convenient to divide the links into 𝑛 bins, where a 

link coefficient of variation is specified for each bin. Algorithms 4.2, 4.3, and 4.4 

show general outlines for the procedures to generate the 𝑐𝑜𝑣𝑎 for each link. The 

general method would be a function where the type of variability is specified (from 

Table 4-2). The function would generate the necessary data to run the function 

solve_strategic() that was introduced in Chapter 2.  

 Algorithm 4.2 shows the method for giving the links with the highest 

congestion the highest level of variability. For this, solve_strategic() must be called 

first (possibly with 𝐶𝑉𝑠 = 0) so that the congestion on a link can be estimated. The 

concept is to divide the links into n groups based on their level of congestion and 

then assign a 𝑐𝑜𝑣𝑎 to each group. 
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Algorithm 4.2: Generate link cv data 

INPUT: set of links ℒ, number of bins 𝑛, coefficient of variation 
of each bin 𝑐𝑣(𝑏); 

 procedure link_cv() 

1: 2 if type: CONGESTION 

2: 3  sort links by flow/capacity ratio in ascending order 

3:  //create bins 

4: 4 for 𝑗 = {1, … , 𝑛} 

5: 5 𝐵 ← 𝐵 ∪ (𝑅𝑎𝑛𝑔𝑒: (𝑗 − 1)/𝑛 − 𝑗/𝑛; 𝑐𝑣(𝑗)) 

6: 6 end while; 

7: 7  while 𝑖 < |ℒ| 

8: 8   if 𝑖 ∈ 𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑏(𝑛) 

9:     cv(i) = cv(b) 

10:  increment 𝑖; 

11:  end while 

12:  end if 

13: 9 return cv; 

 end procedure 

 

The second method of generating a scheme of link variability is to use link capacity 

as a measurement tool. In the case of the capacity enhancement network design 

problem, link capacity is the only indication that the model can control in order to 

decrease expected total system travel time. According to the link cost function, 

travel time will decrease as capacity increases in a nonlinear manner. Therefore, it 

is interesting to investigate the impact of the links with either the highest, or the 

smallest, capacity when those links also have the most variable travel time, or the 

least. The method to generate the link cvs is similar to the method according to link 

congestion. The main difference is to sort the set of links by capacity, instead of by 

𝑣/𝑐 ratio. The procedure in outlined in Pseudo-Algorithm 4.3.  
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Algorithm 4.3: Generate link cv data 

INPUT: set of links ℒ, number of bins 𝑛, coefficient of variation 
of each bin 𝑐𝑣(𝑏); 

 procedure link_cv_continued() 

1: 2 if type: CAPACITY 

2: 3  sort links by expected capacity in ascending order 

3:  //create bins 

4:  for 𝑗 = {1, … , 𝑛} 

5:  𝐵 ← 𝐵 ∪ (𝑅𝑎𝑛𝑔𝑒: (𝑗 − 1)/𝑛 − 𝑗/𝑛; 𝑐𝑣(𝑗)) 

6:  end while; 

7: 4  while 𝑖 < |ℒ| 

8: 5   if 𝑖 ∈ 𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑏(𝑛) 

9: 6    cv(i) = cv(b) 

10:  increment 𝑖; 

11:  end while 

12:  end if 

13: 9 return cv; 

 end procedure 

 

The third method that is outlined normalises the link capacities over a range of 0 – 

a specified maximum range (e.g., 0.3). The procedure to generate this data is 

outlined in Pseudo-Algorithm 4.4. 
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Algorithm 4.4: Generate link cv data 

INPUT: set of links ℒ; max cov; 

 procedure link_cv_continued() 

1: 2 if type: NORMALIZED 

2:  find max(i) and min(i); 

3:  if (max == min) 

4:  set all cv(i) = max_cov; 

5:  else  

6: 4  for each 𝑖 ∈ ℒ do 

7: 5 cov(i) ← max_cov*(1-(cap(i)-min/(max-min)) 

8:  end for 

9:  end if; 

10:  end if 

11: 9 return 𝑐𝑜𝑣(𝑖), ∀𝑖 ∈ ℒ; 

 end procedure 

 

The other cases in Table 4-2 were relatively straightforward and so the pseudo-

code is not included here. Note that the distribution case (either normal or 

uniform) introduces a random element, because each link would just sampled from 

a specified distribution. While this case may not represent a common network 

behaviours, it is useful for the purposes of model comparison. However, the 

element of stochasticity does mean that any specific design scenario could be quite 

biased. This method may be used to test possible extreme cases for the StrUENDP 

model. 

4.5.2 Small network demonstration 

The first demonstration utilizes a network based on the Nguyen-Dupuis network 

that is popular for small transport test cases. The network data can be found in 
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Appendix I. There are two origins (1 and 4) and two destinations (2 and 3) with a 

strategic demand parameter 𝑔(𝑇: 6,240, 𝐶𝑉𝑠𝑡𝑟). Note that the original demand 

resulted in a network that was highly congested and therefore a deflated demand 

was utilized in this work. 

 Figure 4:2 presents results for the StrUE network (where 𝑐𝑜𝑣𝑎 = 0, ∀𝑎) for a 

specific design scenario 𝑠25,1500
𝐸 , meaning that a total of 25 “length units” of 1,500 

vph capacity were added to the network. The horizontal axis shows the value of 

𝐶𝑉𝑠𝑡𝑟as it varies between 0 and 0.6. Figure 4:2(a) shows the value (absolute not 

relative) of ⋄ 𝐸𝑠 and ⋄ 𝑆𝑇𝐷𝑠 (in minutes). Figure 4:2(b) shows the performance 

metrics Δ𝐸𝑠 and Δ𝑆𝑇𝐷𝑠 for the same cases of 𝐶𝑉𝑠𝑡𝑟 .  

 

(a) 
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Figure 4:2 Results for Nguyen Dupuis network and StrUE subproblem 

Figure 4:2 suggests that for a small network and low levels of volatility, a design 

scenario will receive similar evaluations of performance. However, once the 𝐶𝑉𝑠𝑡𝑟 

reaches a certain point, the ⋄ 𝑆𝑇𝐷 becomes much larger and the reduction in 

𝑆𝑇𝐷  is less. It is also empirically observed that in most, but not all, cases the GA 

identifies the same set of projects. 

Figure 4:3 presents the same demonstration where the demand is treated as 

a deterministic quantity. It is assumed that all links in the network have the same 

level of volatility. The horizontal axis of Figure 4:3 shows the values of 𝑐𝑜𝑣𝑎 as it 

varies between 0 – 0.4 in increments of 0.05.  

(b) 
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Figure 4:3 Results for Nguyen Dupuis network and StrUEC subproblem 

Increasing levels of link volatility did not have an immense impact on project 

evaluation. This is likely due to the fact that the links were all treated as uniform, 

i.e., same 𝐶𝑎 and 𝑐𝑜𝑣𝑎 . Therefore the design projects affects ⋄ 𝑆𝑇𝐷 more than ⋄ 𝐸. In 

networks where certain links have higher levels of volatility, this might not be the 

case.  

(a) 

(b) 
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 Next we examine the case where there is volatility in both the demand and 

the capacity. For the results in Figure 4:4, 𝐶𝑉𝑠𝑡𝑟 = 0.3 and 𝑐𝑜𝑣𝑎 = 0.3, ∀𝑎. In this 

experiment, we examine the impact of different budgets, which are shown on the 

horizontal axis. The vertical axis shows the system performance metric, where the 

blue columns represent ⋄ 𝐸 and the grey columns represent the results for ⋄ 𝑆𝑇𝐷. 

The red crosses in Figure 4:4 represent the predicted performance of the design 

scenario in the deterministic case (where 𝐶𝑉𝑠𝑡𝑟 = 0 and 𝑐𝑜𝑣𝑎 = 0, ∀𝑎).  

 

Figure 4:4 Results for Nguyen Dupuis where 𝐶𝑉𝑠𝑡𝑟 = 0.3 and 𝑐𝑜𝑣𝑎 = 0.3∀𝑎 

In many cases, the project selection is different when network uncertainty is 

accounted for. Of course, project evaluation is also different. Network design 

projects can impact the network by either lowering the travel time on routes and 

thereby lowering the total system travel time, according to the travel cost function, 

or by causing people to change routes, which will have unintuitive and 
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unpredictable impacts on system performance metrics. For the simple case of the 

Nguyen Dupuis network, a deterministic approach appears to overestimate the 

impact of design projects.  

4.5.3 Medium network demonstration 

While the network used in Section 4.5.2 is useful to isolate individual behaviours, it 

is too small to capture any significant effects of route choice. Therefore, this work 

presents results from a second experiment on the well known Sioux Falls network, 

the data for which was obtained from Bar-Gera (2014). Sioux Falls consists of 24 

nodes, 76 links and 24 zones. The strategic demand parameter is 

𝑔(𝑇: 360,000, 𝐶𝑉𝑠𝑡𝑟).  

 Figure 4:5 illustrates an example of the genetic algorithm performance. 

Generally, due to the design of the GA, the population converged relatively quickly. 

However, this does not mean that an optimal solution has been found. The 

performance of the GA depends upon the starting population that is randomly 

generated (although all populations were initialised to include a solution with the 

best set of design projects based on congestion). In order to control for premature 

convergence of the GA population, multiple random seeds and multiple scenarios 

were tested.  
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Figure 4:5 Example of genetic algorithm convergence 

Figure 4:6 presents the results for a design scenario 𝑠𝐵,1500
𝐸  for the when the budget 

varies from 20, 40, 60, or 80. The horizontal axis indicates the total budget, while 

the vertical axis indicates the performance metric, which is the reduction in travel 

time or standard deviation due to the design scenario. Figure 4:6(a) presents the 

result for the StrUE model where 𝐶𝑉 = 0.3 (and 𝑐𝑜𝑣𝑎 = 0, ∀𝑎) and Figure 4:6(b) 

presents the results for StrUEC, where 𝑐𝑜𝑣𝑎 is based on  normalizing the capacity to 

a range of 0.0-0.2. 
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Figure 4:6 Results for the Sioux Falls network with (a) StrUE subproblem and (b) 

StrUEC subproblem 

The GA found similar solutions, although the reduction in ⋄ 𝐸 and ⋄ 𝑆𝑇𝐷 was 

greater for the results of the StrUEC model where there was also more volatility. In 

nearly all cases, the GA identifies a different set of links for capacity addition for the 

deterministic versus the stochastic models. Additionally, the level of volatility (as 

captured by increasing the coefficient of variation of the probability distributions) 

(a) 

(b) 
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affects the selection of optimal links. In most cases, increasing the budget resulted 

in links being added to the optimal set for capacity addition. More research is 

needed to determine the relationship between the volatility on individual links and 

network performance metrics. 

 The volatility of capacity on each link could have a significant impact on 

network design decisions. Lacking the appropriate data, Section 4.5.1 described 

five methods of generating link capacity data. The results of those methods on the 

Sioux Falls network, with 𝐶𝑉𝑠𝑡𝑟 = 0.2 and 𝐵 = 50 are shown in Table 4-3. The 

upper bound was set as 0.3, and the lower bound as 0.05, with only a small 

percentage of links being assigned a high 𝑐𝑜𝑣𝑖𝑗 . 

Table 4-3 Sensitivity analysis of link capacity volatility types 

Type ⋄ 𝑬𝑺𝒕𝒓𝑼𝑬 ⋄ 𝑺𝑺𝒕𝒓𝑼𝑬 𝚫(⋄ 𝑬)   𝚫(⋄ 𝑺) 

congestion 9.58E+06 8.52E+06 19.9% 28.1% 

normal 1.06E+07 9.92E+06 20.9% 28.5% 

uniform 1.30E+07 1.77E+07 34.6% 21.5% 

identical  9.36E+06 8.21E+06 19.8% 28.2% 

normalized 1.60E+07 1.90E+07 24.4% 31.0% 

capacity 9.61E+06 8.57E+06 20.0% 28.1% 

 

Table 4-3 shows the impact of network characteristics on project selection and 

evaluation. Of course, it should be noted that the base case ⋄ 𝐸 and ⋄ 𝑆 vary 

significantly because the capacity volatility in the different network types varies 
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significantly. Without more investigation, it is difficult to say whether a network 

that displays a certain characteristic of capacity volatility would be easier or more 

difficult to minimize with capacity enhancements. 

 Next, Figure 4:7, Figure 4:8, and Figure 4:9 compare the results from the 

genetic algorithm for the NDP for the StrUE, StrUEC, and StrSO sub-problems 

respectively. StrUE represents accounting for day-to-day demand uncertainty, 

while StrUEC represents accounting for day-to-day demand and capacity 

uncertainty. The StrSO model does not represent user behaviour and is included for 

the purposes of comparison. 

 Each model shows the results for a varying 𝐶𝑉𝑠𝑡𝑟 between 0 and 0.5 in 

increments of 0.1. The 𝐶𝑉𝑠𝑡𝑟 is shown on the horizontal axis. The vertical axis 

shows the performance measure, which is the reduction in expected travel time 

and standard deviation of total travel time. The budget for all scenarios is 𝐵 = 60. 

In the StrUEC model, link 𝑐𝑜𝑣 is normalized based on capacity. 
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Figure 4:7 Sioux Falls network, NDP results for StrUE 

 

Figure 4:8 Sioux Falls network, NDP results for StrUEC 
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Figure 4:9 Sioux Falls network, NDP results for StrSO 

Finally, Table 4-4 illustrates a small sensitivity analysis of the budget, where the 

effects of the random seed are also shown. The rightmost column indicates the 

random seed (0.3 and 0.8 were chosen here). Thus, the scenario with each budget 

is shown in two rows. The percentage difference between the results are shown in 

the sixth and last columns. 
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Table 4-4 Comparing the effects of random seeds on the Sioux Falls network 

RS 𝑩 ⋄ 𝑬∗ ⋄ 𝑺∗ 𝚫(𝑬, 𝑬∗) 
 

𝚫(𝑺, 𝑺∗) 
 

0.3 10 1.43E+07 1.63E+07 10.8% 0.0% 14.5% 0.0% 

0.8 10 1.43E+07 1.63E+07 10.8% - 14.5% - 

0.3 20 1.34E+07 1.49E+07 16.5% -1.6% 21.6% -2.5% 

0.8 20 1.34E+07 1.50E+07 16.2% - 21.0% - 

0.3 30 1.27E+07 1.40E+07 20.5% 0.0% 26.4% 0.0% 

0.8 30 1.27E+07 1.40E+07 20.5% - 26.4% - 

0.3 40 1.24E+07 1.36E+07 22.3% 0.0% 28.3% 0.7% 

0.8 40 1.24E+07 1.36E+07 22.3% - 28.5% - 

 

Table 4-4 makes it clear that there are numerous design projects that result in 

similar model evaluation, making the uncertain NDP a very difficult problem for the 

GA to solve. However, the many different objectives are in a very close range. 

Therefore, it is vital for planners to consider any additional criteria when making a 

selection of infrastructure design projects. 

4.6 Concluding Remarks 

The network design problem has a solid foundation in the literature, but remains a 

challenging topic among researchers. The problem becomes even more complex 

when uncertainty in real-world parameters is included in the modelling procedure. 

However, network design project rankings may be impacted by the extreme 
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behaviours caused by drivers reaction to uncertainty, which could change ranking 

and evaluation. Additionally, the performance of infrastructure design scenarios 

will almost certainly be forecasted incorrectly and it is not intuitive whether they 

will overestimate or underestimate project performance. 

 This work proposed a network design model that uses the strategic 

assignment approach to capture the reaction of vehicle travellers to day-to-day 

demand uncertainty. Additionally, an extension of the strategic approach where 

day-to-day link capacity is also a random variable, is compared. The model is 

solved using a tailored genetic algorithm. Results show that at low levels of 

volatility, project rankings may not be as significantly impacted; however, project 

evaluations will change. As the volatility in the network increases, not accounting 

for uncertainties in modelling parameters means that suboptimal projects could be 

selected. Future work will explore more in-depth implications of link capacity 

uncertainty on the network design problem and incorporating reliability into the 

strategic route choice decisions of users. 
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5.1 Introduction 

Chapters 2, 3, and 4 of this thesis explored static time models to incorporate 

strategic traveller behaviour and represent daily traffic flow volatility as well as 

two network management applications. However, as previously discussed, practical 

applications of transport planning models often employ multiple models of 

different scales in order to provide a more comprehensive approach to model 

forecasting. In addition, due to the aggregated nature of the models in previous 

chapters, there are a number of traffic phenomenon that may be underrepresented. 

 Chapter 5 and 6 explore strategic modelling approaches that relax one of the 

key assumptions of the models in the previous chapters: time invariance. Given the 

overall complexity of the problem and historical limitations in computational 

processing power, it is not difficult to understand why traffic equilibrium models 

began with assumptions of static time. Additionally, over the decades of 

development and implementation, practitioners grew comfortable with the static 

equilibrium models, like those explored in Part I, and most importantly, the 
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stability of the solutions obtained. However, there is no denying the fundamental 

fact: traffic is a time dependent phenomena with important characteristics that 

cannot be accounted for using static assumptions. Even factors such as departure 

time choice may significantly change model predictions. Figure 5:1 shows a 

dynamic profile of travellers in the Sydney network for a 24 hours period for 

several different modes. A static planning model could not reproduce the situation 

that is displayed in Figure 5:1.  These concerns led to the development of the 

cutting edge field of dynamic traffic assignment (DTA), where the base problem 

remains the same as static traffic assignment – assigning routes to vehicles trips – 

but the impact of additional phenomena such as queuing and spillback can be 

accurately represented. 

 

Figure 5:1 Example of dynamic profile of travelers in the Sydney network (Sydney 

Household Travel Survey) 
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 Since the pioneering work of Merchant and Nemhauser (1978a, 1978b), 

DTA has been an active field of research (the background of which will be 

recounted in Section 5.2) The core behavioural assumption within many DTA 

models is that equilibrium route choice exists.  This assumption provides 

substantial descriptive capabilities but also a potential weakness due to the rarity 

of observed traffic patterns to be in an equilibrium state.  Furthermore, this 

observation is often employed as the key criticism of DTA approaches to an even 

greater degree than to traditional static techniques due to the ability of the 

dynamic models to generally represent traffic in a more realistic and comparable 

manner to observable conditions.  Numerous approaches have emerged to address 

this criticism, often referred to as disequilibrium, stochastic, day-to-day, or 

transient modelling. 

Chapters 5 and 6 of this thesis explore the concept of strategic assignment in 

the dynamic setting. As in previous chapters, strategic assignment modelling 

approaches do not attempt to optimize path (or link) flow directly, but rather to 

discern strategies that are applied following the realization of some uncertain 

variable.   Often, the goal of the new strategic approach is to equilibrate an expected 

condition as opposed to a deterministic cost equilibration.  The current analysis 

focuses on a priori approaches, where routes are assigned prior to travel, in order 

to develop a model that provides superior insights into how traffic volatility 

emerges in the presence of uncertainty. 
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The dynamic strategic assignment approach presented in Chapter 5 is based 

on a DTA formulation by Ziliaskopoulos (2000) that embeds the cell transmission 

model (Daganzo, 1994, 1995) to realistically propagate traffic according to the 

hydrodynamic flow equations (Lighthill & Whitham, 1955; Richards, 1956) and 

captures traffic phenomena (e.g., shockwaves) reasonably well. This formulation is 

adapted to the strategic traffic assignment problem and the implications are 

discussed.  

 

Figure 5:2 Summary of research contribution 

Specifically, Chapter 5 of this thesis expands the linear programming System 

Optimal Dynamic Traffic Assignment (SODTA) modelling framework developed by 

Ziliaskopoulos (2000), which embeds the cell transmission model (Daganzo, 1994) 

for traffic propagation.  While system optimal conditions are modelled (i.e., 

marginal cost equilibration) due to the specific capabilities of the LP approach, 

substantial analytical tools become utilizable, such as stochastic linear 

programming. The novelty of the presented approach is the development of a two-

stage stochastic variation where trip demand is uncertain but represented as a 

random variable that gives rise to multiple potential future scenarios 

 

Novel strategic system optimal dynamic traffic assignment linear 
programming model, for single destination and multiple destinations; 

Consideration of stochastic demand scenarios and reliability. 
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(characterizing different days none of which are in equilibrium/optimality when 

viewed myopically).  In the first stage, routing strategies (i.e., flow proportions) are 

developed to minimize expected system cost and then employed in the second 

stage after the trip demands are realized to produce scenario-dependent dynamic 

flows and densities.  

5.2 Literature Review 

This section provides a literature review of relevant works in the field of dynamic 

traffic assignment and works related to accounting for uncertainty and the strategic 

approach. For completeness, some research mentioned in previous sections may be 

recounted here. 

 A great number of advancements in the field of dynamic traffic assignment 

(DTA) have been proposed since the ground-breaking work of Merchant and 

Nemhauser (1978a, 1978b). The promise of DTA lies in its ability to capture time-

varying flows and thereby achieve superior representations of vehicular traffic.  

However, the addition of temporal phenomena substantially complicates the 

mathematical representation of traffic assignment.  

As with all models, different approaches face their strengths and 

weaknesses. A comprehensive review of the entire field of DTA is beyond the scope 

of this thesis, but this section provides a background of selected, relevant works. In 

a general sense, many DTA models can be classified by two broad approaches.  The 

first uses analytical methods to formulate and solve the DTA problem, usually 
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based on mathematical programming, optimal control theory, or variational 

inequality approaches (Peeta & Ziliaskopoulos, 2001). The analytical approaches 

are able to capture a fine grain of detail, but may be limited by their dependence on 

link performance functions which are difficult to determine, the holding of traffic, 

or the inability to scale up to realistic sized problems.  The second approach is 

based on heuristic methods, usually simulation-based. Simulation based DTA has 

been successfully deployed in a number of metropolitan areas, although static 

approaches remain far more popular. However, these approaches may lack the 

capacity to guarantee global optimality or to offer significant insight on the 

problem. Peeta and Ziliaskopoulos (2001) provide a more comprehensive review of 

keystone DTA literature prior to the year 2000 and discussion on various proposals 

for overcoming the aforementioned shortcomings. 

Similar to the static models discussed in Section 2.2, DTA can be used in the 

place of static traffic assignment in the four-step planning process. Additionally, 

DTA models can use the same behavioural assumptions as static models, except 

with the added consideration of time: a dynamic user equilibrium implies that the 

travel time on all used paths between each origin-destination pair at each 

departure time period is equal. A general approach to finding the DUE solution for a 

network involves iterative procedure: finding a time-dependent shortest path for 

each ODT, a network loading component where the demand is loaded on to the 

network in order to determine the network conditions that result from the path set, 

and then adjusting the demand between the current path set. 
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 However, this thesis looks at an alternative approach to DTA that uses a 

linear programming formulation to find the system optimal flows, instead of the 

more common simulation based procedures that solve for DUE.  

5.2.1 Fundamentals of dynamic traffic modelling 

Dynamic traffic modelling seeks to capture the fundamental relationship between 

speed, density, and flow. The earliest empirical experimentation was conducted in 

the 1930s by Bruce D. Greenshields, who used a 16mm movie camera to record 

vehicles at different intervals in space. These experimentations led to the 

development of Greenshields linear relationship between speed and traffic density 

and the fundamental relation, where 𝑄 is flow, 𝐷 is density, and 𝑣 is speed: 

𝑄 = 𝐷 × 𝑣 (5.1) 

Building upon these relationships, the (Lighthill & Whitham, 1955) and Richards 

(1956) applied cinematic wave theory to explain the propagation of shockwaves in 

a traffic stream. While researchers have studied hundreds of different traffic 

models over the decades, one which has achieved special attention and success is 

the cell transmission model (CTM) (Daganzo, 1994, 1995). The CTM is a numerical 

method that captures the cinematic wave theory in traffic flow. The CTM is 

relatively straightforward to implement and has proved to be a popular tool in 

conjunction with DTA.  
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5.2.2 Overview of the single destination SO-DTA model 

While the CTM can be solved using a set of straightforward equations, the problem 

remains nonlinear and discontinuous, and faces similar drawbacks to other 

simulation-based methods. However, in Ziliaskopoulos (2000) proposed a linear 

programming formulation for the system optimal traffic assignment problem that 

embeds the cell transmission model. Ziliaskopoulos transforms the CTM into a 

series of linear equations that are powerful in their opportunity to solve using well 

established methods and commercial solvers such as CPLEX. The original SODTA 

model is recounted here for completeness. 

 In order to formulate the SODTA model, consider the set 𝐶 of all cells and set 

𝐸 of cell connectors between cell 𝑖 and cell 𝑗. Consider 𝐶𝑅 as the set of origin cells 

and 𝐶𝑆 as the set of destination cells. Consider 𝑇 the set of discrete time intervals, 

where 𝑇 =  {𝜋, 2 𝜋, 3 𝜋, . . . , |𝑇| 𝜋 }, and with no loss of generality, assume that π = 1. 

Consider two more sets: Γ−(𝑖), ∀𝑖 ∈ 𝐶, which defines set of cells preceding cell 𝑖 and 

Γ+(𝑖), ∀𝑖 ∈ 𝐶, which defines the set of cells succeeding cell 𝑖. Additionally, let 𝑁𝑖
𝑡  be 

the maximum number of vehicles that can be present in cell 𝑖 at time 𝑡 and let 𝑄𝑖
𝑡 be 

the maximum amount of flow that can enter or exit cell 𝑖 at time 𝑡. Finally, let 𝑑𝑖
𝑡 be 

the demand at cell 𝑖 ∈ 𝐶𝑅 at time 𝑡. This formulation provides for only a single 

destination and therefore the demand is only indexed by a single cell. 

 The SO-DTA model is formulated as a linear program. The decision variables 

are 𝑥𝑖
𝑡 , ∀𝑖 ∈ 𝐶, ∀𝑡 ∈ 𝑇, which is the density of each cell during each time period, and 
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the cell connectors, 𝑦𝑖𝑗
𝑡 , which represents the flow between cell 𝑖 and cell 𝑗 at time 𝑡.   

The objective is to minimize total system travel time, which is simply the sum of all 

of the density in network over all time periods. This model consistently propagates 

traffics through a single destination network, with expressions (5.2) – (5.10) as 

linear constraints (Ziliaskopoulos, 2000). 

minimize ∑ ∑ 𝑥𝑖
𝑡

∀𝑖∈𝐶\𝐶𝑠∀𝑡∈𝑇

 (5.2) 

subject to   

𝑥𝑖
𝑡 − 𝑥𝑖

𝑡−1 − ∑ 𝑦𝑘𝑖
𝑡−1,

𝑘∈Γ−(𝑖)

+ ∑ 𝑦𝑖𝑗
𝑡−1

𝑗∈Γ+(𝑖)

= 0 ∀𝑖 ∈ 𝐶\{𝐶𝑅 , 𝐶𝑆}, ∀𝑡 ∈ 𝑇, (5.3) 

∑ 𝑦𝑖𝑗
𝑡

∀𝑗∈Γ+(𝑖)

−  𝑥𝑖
𝑡,  ≤ 0 ∀𝑖 ∈ 𝐶, ∀𝑡 ∈ 𝑇  (5.4) 

∑ 𝑦𝑖𝑗
𝑡

∀𝑖 ∈Γ−(𝑗)

 +  𝑥𝑗
𝑡  ≤ 𝑁𝑗

𝑡 ∀𝑗 ∈ 𝐶\{𝐶𝑅 , 𝐶𝑆}, ∀𝑡 ∈ 𝑇 (5.5) 

∑ 𝑦𝑖𝑗
𝑡

∀𝑖 ∈Γ−(𝑗)

 ≤ 𝑄𝑗
𝑡 ∀𝑗 ∈ 𝐶\𝐶𝑅 , ∀𝑡 ∈ 𝑇 (5.6) 

∑ 𝑦𝑖𝑗
𝑡

∀𝑗 ∈Γ+(𝑖)

≤ 𝑄𝑖
𝑡 ∀𝑖 ∈ 𝐶\𝐶𝑆, ∀𝑡 ∈ 𝑇 (5.7) 

𝑥𝑖
𝑡 −  𝑥𝑖

𝑡−1 +  𝑦𝑖𝑗
𝑡−1 =  𝑑𝑖

𝑡−1 
∀𝑗 ∈ Γ+(𝑖), ∀𝑖 ∈ 𝐶, 

∀𝑡 ∈ 𝑇 
(5.8) 
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𝑥𝑖
0 = 0, 𝑦𝑖𝑗

0 = 0 ∀𝑖 ∈ 𝐶, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 (5.9) 

𝑥𝑖
𝑡 ≥ 0, 𝑦𝑖𝑗

𝑡 ≥ 0, ∀𝑖 ∈ 𝐶, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 (5.10) 

Constraints (5.3) enforces conservation of flow, ensuring that all flow that enters a 

cell, leaves the cell, except for source and sink cells. Constraint (5.4) ensures that 

the amount of flow that can move from one cell to the next is restricted by the 

density of the current cell. Constraint (5.5) addresses the capacity of the cell. 

Furthermore, note that the capacity of origin and destination cells is assumed to be 

large enough to allow proper loading of the network demand. Constraints (5.6) and 

(5.7) limit the total inflow and outflow of a cell, while constraint (5.8) loads 

demands onto origin cells. Constraints (5.9) and (5.10) represent initial conditions 

and non-negativity constraints. 

The formulation presented above is cell-centric because it involves only a 

single origin; the path flows are not directly computed or represented in the 

formulation. The route choice element is not critical in the original formulation and 

thus,  extracting path-based information is not trivial. The model in this thesis 

needs to explicitly account for path flows and time-based demand departure, which 

will be discussed more thoroughly in Section 5.3. 

The initial model proposed in this work is adapted from Ziliaskopoulos 

(2000), which proposed a linear programming framework for dynamic traffic 

assignment based on the cell transmission model (Daganzo 2004a, 2004b). The 
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CTM propagates traffic in accordance with the hydrodynamic flow equations but 

also realistically represents flow variability inside the link without the use of a link 

performance function. Ziliaskopoulos' formulation contributes a single destination 

model that does not completely overcome the computational difficulties common 

to the field of DTA, but thanks to the LP formulation it does allow us to gain 

significant insight into the problem. In addition, a number of works refining the 

original model and expanding it to solve other problems common to the 

transportation field have been produced. expand upon this LP formulation of 

SODTA to allow for multi-origins and multi-destinations, while preserving first in 

first out (FIFO) requirements. Li et al (2003) propose a decomposition algorithm 

for the LP SODTA that allows it to be solved on more meaningful sized networks. 

Waller and Ziliaskopoulos (2006) extend the deterministic LP to account for 

stochastic demands, using a chance-constrained stochastic program and provide 

solution techniques. Ukkusuri and Waller (2008) formulates a user-optimal version 

of this problem. Additionally, Waller et al (2006) use the LP formulation to 

optimally solve for the continuous network design problem, a result which would 

not be possible given the usual non-convex formulations for the NDP. 

5.2.3 Stochasticity in DTA 

Dynamic traffic assignment in a deterministic setting is a challenging problem. 

When stochasticity in elements such as travel demand, road capacity, and user 

route choice are accounted for, most approaches become even more complex. This 
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section recounts other works in the field of DTA that account for uncertainty in a 

relevant way. 

 Examining the effects of daily volatility in traffic flow is a problem that can 

be considered from multiple aspects. For example, one source of daily variation 

may be a result of supply side reductions in capacity, like that resulting from traffic 

incidents or adverse weather conditions (Asakura and Kashiwadani, 1991; Clark 

and Watling, 2005).  However, daily variation can also imply an uncertain travel 

demand which is the focus of this work. 

 Traditional equilibrium models are, as the name suggests, dependent upon 

the idea of equilibrium - that is, a consistent state of the network that will remain 

under some rational set of behaviours. Refer to Watling and Hazelton  (2003) for an 

in-depth discussion on the definition of equilibrium. These authors note a common 

criticism of traffic assignment models (dynamic included) that questions the 

existence of an observable equilibrium, a critique that this work seeks to address. 

Building on this issue, and the field of behavioural dynamics, alternative schools of 

thought claim that decisions are affected by learning from previous days, leading to 

potentially unstable conditions; users adapt on a day-to-day basis, and their 

adapting mechanism may undermine the notions of a stable equilibrium 

(Hamdouch et al, 2004). Understanding this new concept of dis-equilibrium has 

become an important area of research, in spite of the mathematical and 

computational complexity of the problem.  
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 Closely related to the issue of day-to-day uncertainty in traffic flow, is the 

issue of uncertainty in the very behaviour exhibited by the decision-makers being 

modelled in the system. This uncertainty goes beyond just that of user perception 

in travel time (as addressed with stochastic user equilibrium models, see Section 

2.2.2).  Traditionally, traffic assignment models have built upon the assumption that 

people seek to minimize their own travel time, but a number of works have 

explored diffing behavioural assumptions. 

 Horowitz (1984) examines the stability of stochastic equilibrium in a two-

link network by analysing different mechanisms of route choice over time. He 

shows that even when equilibrium solutions are unique, link flow values may 

converge to their equilibrium values, oscillate about equilibrium perpetually, or 

converge to a solution not consistent with equilibrium conditions. Cantarella and 

Cascetta  (1995) undertake research on interperiodic demand modelling from both 

a deterministic and stochastic process approach. Rather than focusing on the 

concept of equilibrium, this work focuses on fixed point attractors. Additionally this 

work discusses the conditions for stability of both equilibrium and dynamic 

processes, and the relationship between the two. Watling (1999) extends 

Horowitz’s two-link example to a general network setting, further clarifying the 

distinction between stability in discrete vs. continuous time, and that between 

deterministic and stochastic processes. A dynamical adjustment process is 

proposed for analysing the stability of a general asymmetric stochastic equilibrium 

assignment problem in discrete time.  Watling and Hazelton (2003) further extend 
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the concept of dynamic learning route choice and examine the properties of 

deterministic dynamic systems under perturbation, and the implications of day to 

day route choice adjustments on the stability of equilibria. The authors further note 

the importance of the behavioural mechanism in modelling day-to-day fluctuations, 

and emphasize the need for more analytical techniques over simulation based 

techniques for their potential to offer greater insight.  

 Rather than focusing on a priori path choice decision making, an alternative 

method proposes that people may adapt their route choice based on primary, real-

time experience. Referred to in the literature as adaptive routing (or routing with 

recourse), it is assumed that users may gain information and correspondingly 

change their behavior en route. There is an abundance of research in the literature 

dealing with travel-time adaptive shortest paths (Andreatta and Romeo, 1988;  

Psaraftis and Tsitsiklis , 1993;  Polychronopoulos and Tsitsiklis, 1996 ;  Miller-

Hooks and Mahmassani , 2000;  Waller and Ziliaskopoulos, 2002;  Nie and Fan, 

2006;   Gao and Chabini, 2006). However, extensions of this type of user-level 

behavior to a system equilibrium are much scarcer. Unnikrishnan and Waller 

(2009) extend the online shortest path behaviour described in Waller and 

Ziliaskopoulos (2002) to a user equilibrium framework using a convex math 

programming formulation.  
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5.3 StrSODTA Model Formulation 

This work addresses the impact of demand uncertainty on traditional equilibrium 

planning models. Instead of assuming a deterministic demand value and then 

determining the optimal paths for travellers, this model identifies the optimal 

proportion of flow on each path (for each possible departure time) to minimize 

expected total system travel time across a range of specified discrete demand 

scenarios. Hence, instead of three different demand scenarios resulting in three 

different optimal solutions, the model will output a single optimal value; however, 

no demand scenario is an optimal solution in and of itself. The optimality results 

from a greater strategy prevailing across all potential demand scenarios and may 

be interpreted as an explanation for the randomness that can be observed in traffic 

flow. 

 Section 5.3 presents the strategic system optimal dynamic traffic 

assignment linear programming formulation. First, a single destination linear 

program is introduced, and then the implications and the multi-OD formulation 

presented. The focus of this section is two-fold: to formulate the scenario-based 

optimal path proportion problem as a linear program, and to re-interpret the 

optimal path proportions to represent the probability distribution guiding the path 

choice of each individual belonging to that OD.  
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5.3.1 Single Destination StrSO DTA Formulation 

The proposed model is a powerful tool due to the linear programming formulation 

at its foundation. While at the current time, heuristic solution methods appear to 

offer more in regards to deployability, ultimately most heuristic methods do not 

offer globally optimal solutions. A linear program, on the other hand, can be solved  

to a guaranteed globally optimal solution using well known methods and 

commercial solvers, regardless of the size; however, the LP faces a separate set of 

challenges with regard to the large number of constraints required. 

 In the strategic approach, route proportions on paths for all origin-

destination pairs are optimized to minimize expected system performance over a 

range of stochastic demand scenarios. Therefore, the solution to the StrSODTA 

problem will not constitute an optimal solution to any of the individual demand 

scenarios, representing a level of volatility that is observed in real traffic networks. 

In addition, it is a level of volatility that could not be measured or represented 

using traditional system optimal based approaches. The re-interpretation of the 

path proportions is natural; the expected number of people to follow each path will 

be equal to the optimal path flows. However, as the flows are being randomly 

sampled from this distribution, any specific sample taken from this distribution will 

in general not represent an optimal solution. The variability in the path flows 

resulting from this sampling approach is a natural way of representing the day to 
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day variability in flows. This variability in path flows can be extended to link flows, 

allowing us to measure the reliability and/or volatility of links in the network.  

 The formulation of the LP follows that of Ziliaskopoulos (2000) for the 

SODTA problem, but increases in complexity due to the need to track paths, and the 

scenario-based demand stochasticity. In order to estimate the optimal path 

proportions in this problem, it is necessary to explicitly separate flows based on 

cell, time interval, departure time, path, and demand scenario. The LP formulation 

presented in this chapter aims to find the single set of path proportions that are 

optimal over all demand scenarios, for each OD pair and departure time. Given 

these path proportions, scenario-specific demands are loaded onto the network 

using a CTM-based LP formulation, and system metrics can be calculated. 

 Consider the following notation: let 𝐶 be the set of all cells in the network, 

where a link can be decomposed into cells based on the procedure detailed in 

Section 5.2.1. Let 𝐶𝑟 represent the set of source cells and let 𝐶𝑠 be the set of sink 

cells. Let 𝐸 be the set of cell connectors, containing a cell connector for each cell 𝑖 

and cell 𝑗 that are connected. Let Γ−(𝑖) be the set of cells immediately preceding cell 

𝑖 and let Γ+(𝑖) be the set of cells immediately succeeding cell 𝑖. Let 𝑁𝑡,𝑖 be the 

maximum density of cell 𝑖, corresponding to the CTM parameter of the same index. 

Let 𝑄𝑡,𝑖
−  and 𝑄𝑡,𝑖

+  be the maximum flow into and out of cell 𝑖, again corresponding to 

the CTM parameter of the same index, and for the sake of simplicity, let 

𝑄𝑡,𝑖
− = 𝑄𝑡,𝑖

+ = 𝑄𝑡,𝑖.  
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 Let 𝑇 be the set of time intervals, indexed by 𝑡. In order to explicitly 

represent path-based flow for the strategic approach, the flow needs to be 

represented by path and by departure time to ensure that the strategic proportions 

follow the optimal strategy. Consider 𝜙 ∈ Φ to be a path within the set of all paths 

and let the set of departure times be defined as 𝜏 ∈ 𝑇𝐷: 𝑇𝐷 ⊂ 𝑇. The proposed model 

explicitly accounts for the finite number of demand scenarios, where 𝜉 represents a 

specific demand scenario from the set Ξ. The total demand for a particular scenario 

is 𝐷𝜉 , which is divided by departure time, 𝐷𝜏
𝜉

. Each demand scenario 𝜉 occurs with 

a probability of 𝑝𝜉: ∑ 𝑝𝜉
𝜉∈Ξ = 1. 

 There are three sets of decisions variables for the StrSODTA model. The first 

two are similar to the cell density and cell connector flow variables in the original 

Ziliaskopolous model, but for the strategic approach cells and cell connectors need 

to be indexed by path, departure time, and demand scenario. Let 𝑥𝑡,𝜏,𝑖
𝜉,𝜙

 represent the 

density of cell 𝑖 during time interval 𝑡 and demand scenario 𝜉, of departure time 𝜏, 

and path 𝜙. Let 𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

 represent the flow from cell 𝑖 to cell 𝑗 during time interval 𝑡 

and demand scenario 𝜉, of departure time 𝜏, and path 𝜙. Finally, the model requires 

the strategic path proportion variables: let 𝜋𝜏
𝜙

 represent the proportion of the 

demand 𝐷 that uses path 𝜙 at departure time 𝜏 ∈ 𝑇𝐷. The strategic path 

proportions are the only variable whose scope is across all demand scenarios 𝜉 ∈ Ξ. 

 Conceptually speaking, the LP can be understood as a set of separate single 

origin, single destination DTA problems, one for each path and departure time 
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combination, which share cell and flow capacities at each time step. This 

observation is important, as it serves as a starting point for the potential use of 

decomposition methods similar to those used by Li et al. (2003). 

 The objective of the LP is to find the proportion of flow assigned to each 

feasible path at each departure time period such that the total expected system 

travel time is minimized. Recall that in the discretization of time and space in the 

CTM model, each cell represents the distance a vehicle can travel during a time 

increment Δ𝑡. Thus, the total travel time in the network is equivalent to the density 

of all cells (excluding sink cells) during all time periods. Model StrSODTA provides 

the formulation for the strategic system optimal dynamic traffic assignment model.  

Model SD StrSODTA 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑ ∑ 𝑝𝜉𝑥𝑡,𝜏,𝑖
𝜉,𝜙

𝑖∈𝐶\𝐶𝑠𝜏∈𝑇𝐷𝑡∈𝑇𝜙∈Φ𝜉∈Ξ

  
(5.11) 

subject to   

𝑥𝑡,𝜏,𝑖
𝜉,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜙

− ∑ 𝛿𝑖𝑗
𝜙

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑗𝑖
𝜉,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜙 ∈ Φ,  
∀𝑡 ∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 ,  
∀𝑖

∈ 𝐶\(𝐶𝑟 ∪ 𝐶𝑠): 𝛿𝑖
𝜙

  

(5.12) 

𝑥𝑡,𝜏,𝑖
𝜉,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜙

− ∑ 𝛿𝑖𝑗
𝜙

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜙

= 0 
∀𝜉 ∈ Ξ, ∀𝜙 ∈ Φ,  
∀𝑡 ∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 ,  

∀𝑖 ∈ 𝐶𝑠: 𝛿𝑖
𝜙

   
(5.13) 
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𝑥𝑡,𝜏,𝑖
𝜉,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜙

= 𝜋𝜏
𝜙

𝐷𝜏
𝜉

 
∀𝜉 ∈ Ξ, ∀𝜙 ∈ Φ,  
∀𝑡 ∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 ,  

∀𝑖 ∈ 𝐶𝑟: 𝛿𝑖
𝜙

   
(5.14) 

∑ 𝛿𝑖𝑗
𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

𝑗∈Γ+(𝑖)

+  𝑥𝑡,𝜏,𝑖
𝜉𝜙

≤ 0 
∀𝜉 ∈ Ξ, ∀𝜙 ∈ Φ,  
∀𝑡 ∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 ,  
∀𝑖 ∈ 𝐶\𝐶𝑠            

(5.15) 

∑ ∑ ( ∑ 𝛿𝑖𝑗
𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

𝑖∈Γ−(𝑗)

+ 𝑥𝑡,𝜏,𝑖
𝜉𝜙

) ≤ 𝑁𝑡,𝑖

𝜏∈𝑇𝐷𝜙∈Φ

 

∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖
∈ 𝐶\(𝐶𝑟 ∪ 𝐶𝑠)       

(5.16) 

∑ ∑ ∑ 𝛿𝑖𝑗
𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

𝑗∈Γ−(𝑗)𝜏∈𝑇𝐷𝜙∈Φ

≤ 𝑄𝑡,𝑖 ∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖 ∈ 𝐶\𝐶𝑠          

(5.17) 

∑ ∑ ∑ 𝛿𝑖𝑗
𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

𝑗∈Γ+(𝑖)𝜏∈𝑇𝐷𝜙∈Φ

≤ 𝑄𝑡,𝑖 ∀𝜉 ∈ Ξ, ∀𝑡 ∈
𝑇, ∀𝑖 ∈ 𝐶\𝐶𝑟   

(5.18) 

∑ 𝜋𝜏
𝜙

𝜙∈Φ

= 1 ∀𝜏 ∈ 𝑇𝐷 (5.19) 

𝑦0,𝜏,𝑖𝑗
𝜉,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜙 ∈ Φ,
∀𝜏 ∈ 𝑇𝐷 , ∀(𝑖, 𝑗)
∈ 𝐸           

(5.20) 

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜙 ∈ Φ,  
∀𝑡 ∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 ,  
∀(𝑖, 𝑗) ∈ 𝐸  

(5.21) 

𝑥𝑡,𝜏,𝑖
𝜉,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜙 ∈ Φ,  
∀𝑡 ∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 ,  
∀𝑖 ∈ 𝐶   

(5.22) 

𝜋𝜏
𝜙

≥ 0 ∀𝜙 ∈ Φ, ∀𝜏 ∈ 𝑇𝐷 (5.23) 
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Constraint (5.12) defines the conservation of flow for basic, merge, and diverge 

cells, excluding source and sink cells. Constraint (5.13) defines the conservation of 

flow for sink cells, where the capacity of 𝑖 ∈ 𝐶𝑠 is assumed to be infinite and can be 

considered “outside” of the network. Constraint (5.14) defines the conservation of 

flow for source cells. Constraint (5.14) is particularly important because it loads the 

demand into the network. The set of time intervals in Constraints (5.12), (5.13), 

and (5.14) is denoted as 𝑇∗, where  𝑇∗ ⊂ 𝑇/(0), due to the 𝑡 − 1 index used in each 

of these constraints. Note that the network loading is formulated such that 𝐷0
𝜉

 

enters the network as density during time interval 𝑡 = 1. 

 Constraint (5.15) provides the connection between density in a cell and the 

flow in the cell connector. Constraint (5.16) defines the jam density for all cells 

other than source cells and sink cells. Constraints (5.17) and (5.18) define the 

saturation flow rate between cells. The combination of Constraints (5.15), (5.16), 

and (5.17) create realistic traffic movement, in particular the effects of shockwave 

propagation. 

 The strategic path proportions enter the program in Constraints (5.14) and 

(5.19). Finally, Constraints (5.20) – (5.23) provide non-negativity conditions and 

ensures that all cells are empty during time interval zero. 

 The SDStrSODTA Model has an important advantage: due to the LP 

approach, the model can be solved for globally optimal flows using any commercial 

solver. Additionally, this approach is advantageous because of the relatively simple 
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extensions to important transport problems like network design and infrastructure 

evaluation. 

 The next section expands the StrSODTA model to multiple destinations. 

5.3.2 Multiple-Destination StrSO DTA Formulation 

Many applications in DTA are desirable due to their ability to capture the route 

choice component of user behaviour. For example, under the conditions of dynamic 

user equilibrium, users are assigned routes such that the travel time on all paths 

between an origin-destination at a departure time are equal and minimal. The 

travel time on all routes is in turn influenced by the route choice of users from 

other ODs. While the current approach is based on system optimal flows instead of 

user equilibrium, the interaction between the routes from different ODs is a critical 

element of consideration. 

 The consideration of multiple destinations introduces a well-known issue 

with the system optimal DTA linear program: the issues of holding back. Because 

the objective is to minimize system travel time, not for user equilibrium, the 

program will delay vehicles from certain origin-destinations pairs in favor of 

others, if the travel time will be minimized.  

 In order to expand the SDStrSODTA linear program to account for multiple 

destinations, all flow and density must be indexed by the origin-destination they 

belong to. Therefore, consider a set of origin-destination pairs 𝑂𝐷, indexed by 
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𝜇 ∈ 𝑂𝐷. Then consider the set of paths to be indexed by origin-destination pair 

such that 𝜙 ∈ Φ(𝜇). The indexing of the three decision variables must also be 

expanded to include a specific path representation. The cell density becomes 𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

, 

where 𝜙 ∈ Φ(𝜇) indicates a path in a set of paths for the OD pair 𝜇. Similarly, the 

flow contained in the cell connector becomes 𝑦𝑡,𝜏,𝑗𝑖
𝜉,𝜇,𝜙

, where the path is represented 

in the same way. Finally, the path proportion variable has an addition index 

specifying the OD pair, becoming 𝜋𝜏
𝜇,𝜙

, such that the proportion on all paths for a 

single OD pair must sum to 1.  

 The mathematical programming model for the multiple destination 

StrSODTA model is presented in equations (5.24) - (5.36). The objective is to 

minimize the expected total system travel time, which is the summation of the 

density in each cell for each time period for each demand scenario, multiplied by 

the probability of that demand scenario. 

Model: StrSODTA 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝜉𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

𝑖∈𝐶\𝐶𝑠𝜏∈𝑇𝐷𝑡∈𝑇𝜙∈Φ(μ)𝜇∈𝑂𝐷𝜉∈Ξ

  
(5.24) 

subject to  
 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

− ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑗𝑖
𝜉,𝜇,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,  
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶\(𝐶𝑟 ∪ 𝐶𝑠): 𝛿𝑖
𝜙

  

(5.25) 
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𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

− ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶𝑠: 𝛿𝑖
𝜙

   

(5.26) 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 𝜋𝜏
𝜇,𝜙

𝐷𝜏
𝜉,𝜇

 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶𝑟: 𝛿𝑖
𝜙

   

(5.27) 

∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ+(𝑖)

+ 𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

≤ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖
∈ 𝐶\𝐶𝑠            

(5.28) 

∑ ∑ ∑ ( ∑ 𝛿𝑖𝑗
𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

𝑖∈Γ−(𝑗)

+ 𝑥𝑡,𝜏,𝑖
𝜉𝜙

) ≤ 𝑁𝑡,𝑖

𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

 
∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, ∀𝑖
∈ 𝐶\(𝐶𝑟 ∪ 𝐶𝑠)  

(5.29) 

∑ ∑ ∑ ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ−(𝑗)𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑄𝑡,𝑖 ∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖 ∈ 𝐶\𝐶𝑠 

(5.30) 

∑ ∑ ∑ ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ+(𝑖)𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑄𝑡,𝑖 ∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖 ∈ 𝐶\𝐶𝑟 

(5.31) 

∑ 𝜋𝜏
𝜇,𝜙

𝜙∈Φ(𝜇)

= 1 ∀𝜇 ∈ 𝑂𝐷, ∀𝜏 ∈ 𝑇𝐷 
(5.32) 

𝑦0,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝜏
∈ 𝑇𝐷 , ∀(𝑖, 𝑗) ∈ 𝐸       

(5.33) 

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 ,  
∀(𝑖, 𝑗) ∈ 𝐸 

(5.34) 
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𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖
∈ 𝐶  

(5.35) 

𝜋𝜏
𝜇,𝜙

≥ 0 
∀𝜇 ∈ 𝑂𝐷, ∀𝜙
∈ Φ(𝜇), ∀𝜏 ∈ 𝑇𝐷 

(5.36) 

 

The model presented in above equations is similar to the single-destination model, 

except constraints must be added to account for multiple OD pairs. However, as 

previously noted, the introduction of multiple ODs adds the problem of non-

adherence to first-in first-out behaviour, as will be shown in more detail in the 

following section. 

 There are two performance metrics for the StrSODTA model: the expected 

total system travel time for a set of demand scenarios 𝐸(Ξ) and the experienced 

travel time for each demand scenario in a set, 𝑇𝑇(𝜉). The expected travel time for 

all demand scenarios is the same as the objective function, and is shown in (5.37). 

𝐸(Ξ) = Δ𝑡 ∗ ∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝜉𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

𝑖∈𝐶\𝐶𝑠𝜏∈𝑇𝐷𝑡∈𝑇𝜙∈Φ(μ)𝜇∈𝑂𝐷𝜉∈Ξ

  
(5.37) 

The experienced travel time for an individual demand realization 𝜉 is a sum of the 

density in each cell for each departure time, path, and OD pair. Equation (5.38) 

shows the calculation for the experienced travel time of a demand realization. 
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𝑇𝑇(ξ) = Δ𝑡 ∗ ∑ ∑ ∑ ∑ ∑ 𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

𝑖∈𝐶\𝐶𝑠𝜏∈𝑇𝐷𝑡∈𝑇𝜙∈Φ(μ)𝜇∈𝑂𝐷

  
(5.38) 

 

The following section explores the implications of the StrSODTA model. 

5.4 Model Demonstration 

This section focuses on the implementation and analysis of the-StrSODTA LP 

model, the mathematical formulation for which was presented in the previous 

section. A solution approach to testing static network planning data is presented, 

followed by a detailed numerical analysis. 

5.4.1 1800Solution approach 

As discussed previously, one of the benefits the StrSODTA approach lies with the 

linear programming formulation. Linear programs have a long history and well 

established approaches for efficient solution methods. Commercial solvers such as 

CPLEX are a common approach to solving linear programs, and the approach that 

was utilized here. This section discusses how the model was transformed into the 

necessary form for CPLEX to solve. 

 The input data required for dynamic models is similar the data needed for 

the static approaches discussed in Chapters 3, 4, and 5. However, in addition to 

road network data, including link lengths, capacity, and free-flow cost, DTA models 

also require data regarding the time-nature of the demand; specifically, the 
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departure times for all demand, for all origins and destinations. Given the relative 

newness of DTA models, dynamic network data is not always available. However, 

based on series of reasonable assumptions, this section discusses the process to 

transform static data into data that can be used with dynamic models. In addition 

to being a useful technique given common constraints in practice, this approach 

also allows a general comparison between static and dynamic modelling results. 

 The solution approach for the StrSODTA model consists of six general steps, 

which are described and further outlined in pseudo-code form. The steps are: 

decompose the link network to a cell network, create the dynamic demand 

scenarios, manage the link-path incidence matrices, create the linear programming 

model using the AMPL programming interface, solve the model using CPLEX, and 

calculate the system performance metrics. While it is possible to directly create a 

linear programming model using the C++ CPLEX API, the author deemed using the 

AMPL modelling language to be the more versatile approach. 

 The first step to solving the StrSODTA model is to transform the link 

network, such as the Nguyen Dupius or the Sioux Falls networks from previous 

chapters, into a cell network that is used with the CTM (Section 5.2.1). This 

procedure is outlined in the form of pseudo-code in Algorithm 6.1. The CTM 

recognizes four kinds of cells: ordinary cells, merge/diverge cells, source cells, and 

sink cells. Due to the use of predecessor and successor cell sets, this approach need 

only explicitly differentiate between ordinary, source, and sink cells. A single link 
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will be decomposed into a group of ordinary cells, with possible source, sink, 

merge, or diverge cells on each end. A link is decomposed into cells based on the 

free flow travel time of the link, where each cell is the distance a vehicle can travel 

at free flow during the time step Δ𝑡. The number of cells is rounded up, leading to 

the well-known problem of discretization error of the CTM.  In order to identify the 

“type” of each cell, the succeeding and preceding cells are counted, similar to the 

procedure to create the appropriate sets Γ+(𝑖) and Γ−(𝑖).  

 Generally planning data for link capacity is provided in vehicles per hour, as 

was discussed in more detail in Section 0. For a link (𝑖, 𝑗), capacity was interpolated 

to a “per second” capacity, and then multiplied by Δ𝑡 to obtain the jam density of 

each cell 𝑁(𝑖), for each 𝑖 contained in 𝑎. The issue of saturation flow rate of each 

cell can be a trickier concept, here is literature that supports an assumption.  
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Algorithm 6.1: StrSODTA Algorithm Pseudocode 

INPUT: Network 𝐺 = (𝑁, 𝐴); time step Δ𝑡; 

 procedure decompose_link_network() 

1:  for 𝑖 ∈ 𝐴 do 

2:  create 𝑛 = ceiling(𝑓𝑟𝑒𝑒𝑓𝑙𝑜𝑤𝑇𝑇(𝑖)/Δ𝑡) new cells; 

3:  for each 𝑗 ∈ 𝑛 do 

4:  if (n == source cell) 

5:  𝐶𝑟 ← 𝐶𝑟 ∪ 𝑗, 𝑄𝑗 ← ∞,  

6:  𝑁𝑗 ← 2𝑄𝑗; 

7:  else if (n == sink cell) 

8:  𝐶𝑠 ← 𝐶𝑠 ∪ 𝑗,  

9:  𝑄𝑗 ← (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖)/3600 ∗ Δ𝑡), 𝑁𝑗 ← ∞; 

10:  else (n == ordinary cell) 

11:  𝐶 ← 𝐶 ∪ 𝑗  

12:   𝑄𝑗 ← (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖)/3600 ∗ Δ𝑡), 

13:  𝑁𝑗 ← 2𝑄𝑗 

14:  end for all 

15:  end for 

16:   for 𝑖 ∈ 𝐶 do 

17:  create Γ+(𝑖) and Γ−(𝑖); 

18:  end for 

 end procedure 

OUTPUT: 𝐶; 𝐶𝑟; 𝐶𝑠; 𝑁𝑖𝑄𝑖, Γ−(𝑖), Γ+(𝑖) ∀𝑖 ∈ 𝐶; 

The next step is to create the demand-related parameters for input to the StrSODTA 

model. The required input is a set of demand scenarios, where the demand and 

departure time between each origin and destination is defined for each scenario. 

This information is not contained within static demand data and a set of justifiable 

assumptions are required. Therefore, this work tests two relationships between 

demand scenarios: perfectly correlated and uncorrelated. The difference between 

these approaches is the amount that the expected demand is inflated or deflated in 

the additional scenarios. In the perfectly correlated approach, the demand for all 
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ODs is inflated or deflated by the same amount. In the independent approach, the 

demand is inflated or deflated based on a randomly generally number. 

 The number of departure times and the time step of those departures needs 

to be based on reasonable assumptions, such as a uniform distribution or a “peak” 

distribution to represent different network conditions that are observed in reality. 

Sensitivity analysis regarding the departure times could be also reveal interesting 

model characteristics. Generally, this demonstration keeps the number of 

departure times relatively small to control the size of the linear program and 

corresponding computational time, although in theory, this need not be a 

limitation. 

 Algorithm 6.2 outlines the procedure to create the demand scenarios from 

the static demand data. First, the set of OD pairs is created. Then the total demand 

for each OD 𝑤𝑟𝑠is divided between a specified number of departure times (i.e., 

|𝑇𝐷|). Note that the pseudo-code is intended to be functional, regardless of the 

number of specified demand scenarios. To achieve this purpose, the algorithm uses 

the cardinality of the demand scenario within the set, denoted |𝜉|. The first demand 

scenario is assumed to be the expected demand. For odd numbered demand 

scenarios within the set (i.e., |𝜉| % 2 ≠ 0), the demand is inflated, and for even 

numbered demand scenarios, the demand is deflated. This approach assumed a 

uniform distribution between departure times, although relaxing this assumption 

would require a small addition to lines 27, 29, 33, and 35. 
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Algorithm 6.2: StrSODTA Algorithm Pseudocode 

INPUT: 𝑊; Ξ; 𝑇𝐷; demand correlation type (CORRELATED, 
INDEPENDENT);  
 procedure create_demand_scenarios() 

1: 2 for 𝑟 ∈ |𝑊| do 

2:  for 𝑠 ∈ |𝑊| do 

3:  𝑂𝐷 ← 𝑂𝐷 ∪ 𝜇(𝑟, 𝑠) 

4:  end for 

5:   end for 

6:  for 𝜇 ∈ 𝑂𝐷 do 

7:  for 𝜉 ∈ Ξ do 

8:  for 𝜏 ∈ 𝑇𝐷 do 

9:  if |𝜉| == 0 

10:  𝐷𝜏
𝜉,𝜇

← 𝑤𝑟𝑠/|𝑇𝐷| 

11:  else if type == CORRELATED 

12:  if (|𝜉| % 2) ≠ 0 //odd number 

13:  𝐷𝜏
𝜉,𝜇

← 𝑤𝑟𝑠(1 + |𝜉|/100)/|𝑇𝐷| 

14:  else //even number 

15:  𝐷𝜏
𝜉,𝜇

← 𝑤𝑟𝑠(1 − |𝜉|/100)/|𝑇𝐷| 

16:  else type == INDEPENDENT 

17:  r ← uniform random sample 

18:  if (|𝜉| % 2) != 0 

19:   𝐷𝜏
𝜉,𝜇

← 𝑤𝑟𝑠 ∗ (1 + 𝑟/100)/ |𝑇𝐷| 

20:  else  

21:  𝐷𝜏
𝜉,𝜇

← 𝑤𝑟𝑠 ∗ (1 − 𝑟/100)/ |𝑇𝐷| 

22:  end for 

23:  end for 

24:  end for 

 end procedure 

OUTPUT: 𝑂𝐷; 𝐷𝜏
𝜉,𝜇

, ∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷, ∀𝜏 ∈ 𝑇𝐷; 

 

One of the biggest changes between the StrSODTA model and previous applications 

of Ziliaskopoulos’ LP is the need to explicitly represent and track paths. As the size 

of a network increases, the number of paths becomes potentially very large and 
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may have a significant effect on the computational size of the linear program (a 

topic that was explored by Rey et al (2014)). Additionally, the addition of paths 

introduces the data handling issue of explicitly representing the relationship 

between links, cells, and paths (which was handled using a forward star 

representation in the static case), and the issue of identifying the paths (which was 

handled using a shortest path approach in the static case). While innovative 

approaches that don’t explicitly save path information (such as bush-based 

algorithms by Dial) are possible, the paths proportions play a significant role in the 

strategic approach, requiring the representation of paths. 

 Algorithm 6.3 describes the method for creating the path set for each OD 

pair and the link-path incidence matrix that is required for Constraints (5.25), 

(5.26), and (5.27). First, a 𝑘 shortest path algorithm (Yen, 1971) finds each path in 

the set, where the number of paths 𝑘 is specified by the user. The paths are based 

on free-flow costs.  Rey et al (2014) found that 𝑘 = 5 is a sufficient value. While the 

𝑘 path algorithm is based on link identification, it is also helpful to save the cell 

representation of each path. In that way, creating the cell connector-path incidence 

matrix for each path of each OD pair is a relatively straightforward logical check (or 

in common programming terms, a search) of whether cell 𝑖 and cell 𝑗 are included 

in the set of cells that comprise each path 𝜙. 
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Algorithm 6.3: StrSODTA Algorithm Pseudocode 

INPUT: 𝑂𝐷; 𝑘;  

 procedure manage_link_path_incidence() 

1: 2 for 𝜇 ∈ 𝑂𝐷 do 

2:  Add 𝑘 (shortest) paths to Φ(𝜇); 

3:  end for 

4:  for 𝜇 ∈ 𝑂𝐷 do 

5:   for 𝜙 ∈ Φ(𝜇) do 

6:  for 𝑖 ∈ 𝐶 do 

7:  for 𝑗 ∈ 𝐶 do 

8:  if 𝑖 == 𝑗 

9:  𝛿𝑖𝑗
𝜇,𝜙

← 0 

10:  else if ∃(𝑖 ∈ 𝜙) && ∃(𝑗 ∈ 𝜙) 

11:  𝛿𝑖𝑗
𝜇,𝜙

← 1 

12:  else 

13:  𝛿𝑖𝑗
𝜇,𝜙

← 0 

14:  end for 

15:  end for 

16:  end for 

17:  end for 

 end procedure 

OUTPUT: Φ(𝜇), ∀𝜇 ∈ 𝑂𝐷; 𝛿𝑖𝑗
𝜇,𝜙

, ∀𝜇 ∈ 𝑂𝐷, ∀𝜙 ∈ Φ(𝜇), ∀𝑖, 𝑗 ∈ 𝐶; 

 

Algorithms 6.1.1, 6.1.2, and 6.1.3 create the input data to solve the model. The next 

step is to create the model in a form that CPLEX can solve. AMPL is a programming 

language that provides the interface between mathematical programming and 

solver such as CPLEX, Gurobi, CONOPT, all which may apply different solution 

methods and be more appropriate for different forms of problems, generally linear, 

quadratic, and smooth nonlinear. CPLEX is the best known and most widely used 

large-scale solver, according to the AMPL website. CPLEX requires a license for 
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large scale programs, which was provided by the RCITI for use in the numerical 

results of this thesis. While initially alternative modelling interfaces such as GAMS 

were considered, AMPL was ultimately selected due to its great versatility and 

straightforward implementation. 

 The StrSODTA model file for AMPL is written in such a way that it is not 

dependent on the network itself. Algorithms 5.1, 5.2, and 5.3 provide the 

appropriate inputs to create a network-specific data file for the AMPL model. The 

mathematical program presented in Section 5.3.1 and Section 5.3.2 was coded in 

AMPL. Then an automated process was written to generate the appropriate data for 

the StrSODTA model. The AMPL program handled the interface between the solver 

CPLEX and the StrSODTA model. The full procedure to create and solve the 

StrSODTA model is presented in Algorithm 6.4. 



 

190 

Algorithm 6.4: StrSODTA Algorithm Pseudocode 

INPUT: 𝐶(𝐺), Ξ, 𝑇𝐷, 𝑂𝐷, 𝐷, 𝑃𝜉 , ∀𝜉 ∈ Ξ; 

 procedure Solve_StrSODTA() 

1: 2 decompose_link_network(); 

2:  create_demand_scenarios(); 

3:  manage_link_path_incidence(); 

4:  Create model StrSODTA using AMPL language; 

5:  Create StrSODTA AMPL data file; 

6:  Use CPLEX to solve StrSODTA; 

7:  Calculate performance metrics; 

 end procedure 

OUTPUT: 𝜋𝜏
𝜇,𝜙

, ∀𝜇 ∈ 𝑂𝐷, ∀𝜙 ∈ Φ(𝜇), ∀𝜏 ∈ 𝑇𝐷; , 𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

, 𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

, ∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,

∀𝜙 ∈ Φ(𝜇), ∀𝑡 ∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖 ∈ 𝐶, (𝑖, 𝑗) ∈ 𝐸; 𝐸(Ξ); 𝑇𝑇(𝜉), ∀𝜉 ∈ Ξ; 
 

5.4.2 Description of test network 

Using the Solve_StrSODTA procedure described in Section 5.4.1, this chapter 

performs a numerical analysis on the Nguyen Dupius and Sioux Falls networks. The 

Nguyen Dupuis is a small test network with no cycles and can be used to form a 

more disaggregate view of model behaviour. Sioux Falls is a common grid-based 

test network in transport modelling. In order to decompose each network into a 

cell-based representation instead of a link based representation, a link is divided 

into sections based on how far a vehicle can travel during a timestep Δ𝑡. Therefore, 

the size of the network and the corresponding size of the StrSODTA LP depends on 

the desired resolution. 
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 Table 5-1 compares the timestep Δ𝑡 and the resulting number of cells and 

cell connectors in the Nguyen Dupius and Sioux Falls networks. The difference is 

linear according to the time step, with the difference being due to rounding error 

and the fact that source and sink links are required to be only one cell. A number of 

CTM-based DTA implementations utilize a time resolution of six seconds. However, 

the computational complexity of the StrSODTA model increases significantly with 

the number of cells in the network (as well as the number of OD pairs, paths, 

departure times, and demand scenarios). In order to keep the solve time pf the LP 

reasonable, Δ𝑡 = 120 was chosen for many applications presented in this thesis. 

Section 5.4.3 presents a small sensitivity analysis with regard to the timestep. 

While such a large time step may not be entirely realistic, it was judged to be 

appropriate for the size and geometric characteristics of the test networks. 

Additionally, it allows the StrSODTA problem to be solved on networks that can be 

compared with other modelling approaches, like those presented in Chapter 2.     

Table 5-1 Test Network Characteristics 

 
Nguyen Dupius Sioux Falls 

Δ𝑡 |𝐶| |𝐸| |𝐶| |𝐸| 

6 1325 1335 3148 3339 

30 277 287 636 827 

60 144 154 322 513 
90 102 112 244 513 

120 79 89 192 383 
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The parameters that can be varied for sensitivity analysis include the inputs to the 

Algorithm 6.1.4: the timestep, the demand values, the number of departure times, 

the number of paths, the number of demand scenarios, and the relationship 

between the demand in each demand scenario. 

5.4.3 Single-destination model demonstration 

This section demonstrates the SD-StrSODTA model in a relatively simple example 

in order to illustrate the propagation of flow in the proposed model: two demand 

scenarios, two departure times (𝑇𝐷 = {1,2}), two origins, one destination, and two 

paths per OD (𝑘 = 2), on the Nguyen Dupuis network. The expected demand is 

shown in Table 5-2. Due to the simple parameters, the results can be examined in 

more intricate detail, facilitating understanding of the fundamental model 

behaviour. 

Table 5-2 Expected demand for the single destination Nguyen Dupius case 

 
2 

1 400 

4 100 

 

N between 58-67, Q = 73.3 

A large time step of Δ𝑡 = 120 was chosen for this section to keep the results to a 

reasonable size. A large number of time steps were included, 𝑇 = 40, or 4,800 
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seconds of “simulation” to ensure that all vehicles left the network.  This timestep 

led to a jam density of all cells is between 58-67, and all vehicles have the same 

capacity, and therefore the same 𝑄 = 73.3.  This section presents results as a time-

space density diagram. Each cell in a particular path lies across the horizontal axis, 

with each time step on the vertical axis. Thus, each block represents a cell during a 

particular time step, with time beginning in the top left corner of the diagram and 

ending in the bottom right corner. The numbers in the blocks represent the cell 

density at a particular time period, where cells that are shown in red have zero 

density. Each path is shown in two diagrams; the first shows just the density of a 

particular path and OD pair, while the second diagram shows the total density in 

each cell at each time step. In this way, one can read the progression of “vehicles” 

through the network. 
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Figure 5:3 Cell-density diagram for 𝜉 = 1, 𝑚 = (1,2), 𝜙 = 1: path density 

The areas of interest in the cell density diagrams occur when “queuing” is possible, 

or the origin cell and merge/diverge cells. In the first cell-density diagram 

presented in Figure 5:3, there are two departure times where vehicles enter the 

network at 𝑡 = 0 and 𝑡 = 11. It requires between 3 and 4 timesteps for all vehicles 

to leave the origin cell 𝑖 = 76. There are two cells that succeed cell 76: cell 0 and 

cell 4. However, an immediate example of holding presents itself: the density of cell 

76 0 1 2 3 16 17 21 22 29 30 31 40 41 42 9

0

1 127

2 61 66

3 61 5.3 61

4 66 61

5 66 61

6 66 17 44

7 17 66 44

8 17 22 44 44

9 39 44 44

10 39 44 44

11 130 39 44 44

12 64 66 39 44 44

13 64 66 39 44 44

14 64 66 39 44 44

15 64 22 44 39 44 44

16 64 22 44 39 44 44

17 34 29 22 44 39 44 44

18 34 29 22 44 39 88

19 34 29 15 7.3 44 39 88

20 34 44 7.3 44 39 88

21 34 44 7.3 44 39 88

22 34 51 44 127

23 34 51 44 127

24 34 51 44 127

25 34 51 44 127

26 34 51 171

27 34 51 171

28 34 51 171

29 34 51 171

30 34 222

31 34 222

32 256

Scenario 1,OD (1-2), Path 1
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76 is 64 for timesteps 11, 12, and 13, despite the fact that the succeeding cell 0 is 

empty (which we can verify in  

 

Figure 5:4 Cell-density diagram for 𝜉 = 1, 𝑚 = (1,2), 𝜙 = 1: total density 

 

76 0 1 2 3 16 17 21 22 29 30 31 40 41 42 9

0

1 200

2 64 66

3 64 5.3 61

4 66 61

5 66 61

6 66 17 44

7 17 66 44

8 17 22 44 44

9 39 44 44

10 39 59 44

11 200 39 59 44

12 64 66 39 59 59 44

13 64 66 39 59 59 44 50

14 64 66 39 59 59 44 50

15 64 22 44 39 59 59 44 50

16 64 22 44 39 59 59 94

17 34 29 22 44 39 59 59 94

18 34 29 22 44 39 59 153

19 34 29 15 7.3 44 39 59 153

20 34 44 66 44 39 211

21 34 44 7.3 59 44 39 211

22 34 59 59 44 250

23 34 59 59 44 300

24 39 59 59 44 300

25 39 59 59 44 300

26 39 59 59 344

27 39 59 59 344

28 39 59 403

29 39 59 403

30 39 461

31 39 461

32 500

Scenario 1,OD (1-2), Path 1 (Total Flow)
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Figure 5:5 Cell-density diagram for 𝜉 = 1, 𝑚 = (1,2), 𝜙 = 1: path density 

 

76 0 1 2 3 16 17 21 22 29 30 31 40 41 42 9 76 0 1 2 3 16 17 21 22 29 30 31 40 41 42 9

0 0

1 127 1 200

2 61 66 2 64 66

3 61 5.3 61 3 64 5.3 61

4 66 61 4 66 61

5 66 61 5 66 61

6 66 17 44 6 66 17 44

7 17 66 44 7 17 66 44

8 17 22 44 44 8 17 22 44 44

9 39 44 44 9 39 44 44

10 39 44 44 10 39 59 44

11 130 39 44 44 11 200 39 59 44

12 64 66 39 44 44 12 64 66 39 59 59 44

13 64 66 39 44 44 13 64 66 39 59 59 44 50

14 64 66 39 44 44 14 64 66 39 59 59 44 50

15 64 22 44 39 44 44 15 64 22 44 39 59 59 44 50

16 64 22 44 39 44 44 16 64 22 44 39 59 59 94

17 34 29 22 44 39 44 44 17 34 29 22 44 39 59 59 94

18 34 29 22 44 39 88 18 34 29 22 44 39 59 153

19 34 29 15 7.3 44 39 88 19 34 29 15 7.3 44 39 59 153

20 34 44 7.3 44 39 88 20 34 44 66 44 39 211

21 34 44 7.3 44 39 88 21 34 44 7.3 59 44 39 211

22 34 51 44 127 22 34 59 59 44 250

23 34 51 44 127 23 34 59 59 44 300

24 34 51 44 127 24 39 59 59 44 300

25 34 51 44 127 25 39 59 59 44 300

26 34 51 171 26 39 59 59 344

27 34 51 171 27 39 59 59 344

28 34 51 171 28 39 59 403

29 34 51 171 29 39 59 403

30 34 222 30 39 461

31 34 222 31 39 461

32 256 32 500

Scenario 1,OD (1-2), Path 1 (Total Flow)Scenario 1,OD (1-2), Path 1
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Figure 5:6 Cell-density diagram for 𝜉 = 1, 𝑚 = (1,2), 𝜙 = 2: path density 

 

76 4 5 6 7 8 60 61 62 21 22 29 30 31 40 41 42 9

0

1 73

2 2.9 70

3 2.9 70

4 2.9 56 15

5 2.9 56 15

6 2.9 56 15

7 59 15

8 59 15

9 59 15

10 59 15

11 70 59 15

12 70 59 15

13 70 59 15

14 70 59 15

15 12 59 59 15

16 12 59 59 15

17 12 59 59 15

18 12 59 59 15

19 12 59 59 15

20 12 59 73

21 12 59 73

22 4.4 7.3 59 73

23 4.4 7.3 59 73

24 4.4 7.3 59 73

25 4.4 7.3 59 73

26 4.4 7.3 59 73

27 4.4 7.3 59 73

28 4.4 7.3 132

29 4.4 7.3 132

30 4.4 139

31 4.4 139

32 144

33 144

Scenario 1,OD (1-2), Path 2
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Figure 5:7 Cell-density diagram for 𝜉 = 1, 𝑚 = (1,2), 𝜙 = 2: total density 

There are two paths between OD pair (4,2), but the total demand is only 100, 

divided between two departure times. Therefore, the total number of vehicles is 

less than the saturation flow rate of 73. Of the two paths, one path includes cells 

that are used for OD pair (1,2), but the path 2 does not. Therefore, the optimal 

proportions were to route all of the flow onto path 2 and zero of the flow onto path 

1.  Figure 5:8 and Figure 5:9 show the cell density diagrams for OD pair (4,2). 

76 4 5 6 7 8 60 61 62 21 22 29 30 31 40 41 42 9

0

1 200

2 64 70

3 64 70

4 2.9 56 15

5 2.9 56 15

6 2.9 56 15

7 59 15

8 59 15 44

9 59 15 44

10 59 59 44

11 200 59 59 44

12 64 70 59 59 44

13 64 70 59 59 44 50

14 64 70 39 59 59 44 50

15 12 59 39 59 59 44 50

16 12 59 39 59 59 94

17 12 59 39 59 59 94

18 12 59 44 39 59 153

19 12 59 44 39 59 153

20 12 66 44 39 211

21 12 7.3 59 44 39 211

22 4.4 59 59 44 250

23 4.4 59 59 44 300

24 39 59 59 44 300

25 39 59 59 44 300

26 39 59 59 344

27 39 59 59 344

28 39 59 403

29 39 59 403

30 39 461

31 39 461

32 500

Scenario 1,OD (1-2), Path 2 (Total Flow)
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Figure 5:8 Cell-density diagram 𝑚 = (4,2), 𝜙 = 1: path density 

 

77 10 11 16 17 21 22 29 30 31 40 41 42 9 77 10 11 16 17 21 22 29 30 31 40 41 42 9

0 0

1 1 50

2 2

3 3

4 4

5 5

6 6 44

7 7 44

8 8 44 44

9 9 44 44

10 10 39 59 44

11 11 50 39 59 44

12 12 39 59 59 44

13 13 39 59 59 44 50

14 14 39 59 59 44 50

15 15 39 59 59 44 50

16 16 44 39 59 59 94

17 17 44 39 59 59 94

18 18 22 44 39 59 153

19 19 15 7.3 44 39 59 153

20 20 44 66 44 39 211

21 21 44 7.3 59 44 39 211

22 22 34 59 59 44 250

23 23 34 59 59 44 300

24 24 39 59 59 44 300

25 25 39 59 59 44 300

26 26 39 59 59 344

27 27 39 59 59 344

28 28 39 59 403

29 29 39 59 403

30 30 39 461

31 31 39 461

32 32 500

Scenario 1,OD (4-2), Path 1 Scenario 1,OD (4-2), Path 1 (Total Flow)
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Figure 5:9 Cell-density diagram for  𝑚 = (4,2), 𝜙 = 2: path density 

Next, this section performs a sensitivity analysis of the parameters 𝑘, 𝑇𝐷, Δ𝑡, and Ξ. 

The sensitivity analysis was performed on the single destination model because the 

computational time on this model was very small, allowing the sensitivity analysis 

to be performed almost instantly. 

 First, a sensitivity analysis on the size of the timestep was performed. Table 

5-3 shows the results for 3 demand scenarios (that were determined as in 

Algorithm 6.2) and Δ𝑡 = 120,90,60,30. The demand is the same for all four cases. 

This sensitivity analysis requires the SDStrSODTA model to be solved four times, 

77 12 13 14 15 43 44 53 54 55 56 57 9 77 12 13 14 15 43 44 53 54 55 56 57 9

0 0

1 50 1 50

2 50 2 50

3 50 3 50

4 50 4 50

5 50 5 50

6 50 6 50

7 50 7 50

8 50 8 50

9 50 9 50

10 50 10 50

11 50 50 11 50 50

12 50 50 12 50 50

13 50 50 13 50 50

14 50 50 14 50 50

15 50 50 15 50 50

16 50 50 16 50 94

17 50 50 17 50 94

18 50 50 18 50 153

19 50 50 19 50 153

20 50 50 20 50 211

21 50 50 21 50 211

22 50 50 22 50 250

23 100 23 300

24 100 24 300

25 100 25 300

26 100 26 344

27 100 27 344

28 100 28 403

29 100 29 403

30 100 30 461

31 100 31 461

32 100 32 500

Scenario 1,OD (4-2), Path 2 (Total Flow)Scenario 1,OD (4-2), Path 2
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where each column in Table 5-3 represents a model instance, with different 

optimal proportions.  

Table 5-3 Time step sensitivity analysis of performance metrics 

𝚫𝒕 120 90 60 30 

𝑻𝑻(𝟏) [hours] 321.8 311.2 294.8 300.2 

𝑻𝑻(𝟐) [hours] 358.8 347.6 332.8 339.9 

TT(3) [hours] 249.2 240.4 222.5 226.0 

𝑬(𝚵) [𝐡𝐨𝐮𝐫𝐬] 309.93 299.73 283.37 288.7 

 

At higher levels of time aggregation, the model should show more discretization 

error, and therefore a higher 𝐸(Ξ). For the time steps of 120, 90, and 60, the model 

shows a decreasing prediction of travel time, as expected. However, when the time 

step is 30 seconds, the model prediction for all performance measures increases 

again. This may be due to some balance between cell sizes that are too large to 

capture the effects of congestion and cell sizes that are computationally feasible. 

 The next sensitivity analysis compares the number of demand scenarios and 

the time step. Table 5-4 shows the results for the SDStrSODTA model where Ξ = 2. 

Table 5-4 Comparison of different time steps and the number of demand scenarios 

𝚫𝒕 120 90 60 30 

𝑻𝑻(𝟏) 321.78 311.20 294.81 300.17 
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𝑻𝑻(𝟐) 358.84 347.60 332.81 339.90 

𝑬(𝚵) 10209.30 13176.00 18828.70 38404.00 

 

The sensitivity analysis continues with a comparison of the proportions resulting 

from the SDStrSODTA model. Table 5-5 shows the proportions for OD pair (1,4) for 

the same scenario that was show in the cell density plots. Although, both the travel 

time and the expected travel time are the same in all scenarios, the proportions the 

model predicts are not. Table 5-5 shows for that uncongested models, path 

proportions are not unique.  

Table 5-5 Comparison of 𝑝1,4 at departure time 𝜏 = 1 

𝒎 = (𝟏, 𝟒) 𝚵 = 𝟏 𝚵 = 𝟐 𝚵 = 𝟑 

Path 1 0.55 0.6 0.433333 

Path 2 0.45 0.4 0.566667 

 

The final sensitivity analysis on the small network examines the number of paths 𝑘 

and the number of departure times, 𝜏 ∈ 𝑇𝐷. Increasing the number of paths will 

lower the total travel time to the point that the extra paths are not used. Adding 

departure times for the same amount of demand should also lower the total travel 

time, because the vehicles will be more spread out and there will be fewer 

congestion issues. Both of these trends are observed in Table 5-6. However, the 
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additional path from 3 to 4 did not lower total travel time. This may indicate that 

the additional path was not used, but due to the non-uniqueness of path 

proportions, the additional path may not have lowered the travel time. 

Table 5-6 Sensitivity analysis of k and dt 

 
𝒌 = 𝟑, 𝒅𝒕 = 𝟐 𝒌 = 𝟑, 𝒅𝒕 = 𝟑 𝒌 = 𝟒, 𝒅𝒕 = 𝟑 

𝑻𝑻(𝟏) 302.9 296.0 296.0 

𝑻𝑻(𝟐) 337.3 329.7 329.7 

𝑻𝑻(𝟑) 238.7 232.3 232.3 

𝑬(𝜩) 288 286 286 

 

Next, the multiple destination model is examined. 

5.4.4 Multiple-destination model demonstration 

This section presents the multiple destination StrSODTA model on the Nguyen 

Dupius and Sioux Falls networks. Although a large time step is necessary to make 

this approach computationally feasible, the use of the same network data in Parts I 

and II of this thesis allows for very rough comparison of modelling techniques. This 

ability to compare was deemed more important than working on a small time step. 

The parameters in this section were chosen as follows: 𝑘 = 4, 𝑑𝑡 =  3 (Δ𝑡 =

0, 10, 20), 𝑇 = 100, Δ𝑡 = 120. Table 5-7 shows the expected demand for the Nguyen 
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Dupius network and Table 5-10 shows the expected demand for the Sioux Falls 

network. 

Table 5-7 Full expected demand for Nguyen Dupius 

 
2 3 

1 1400 1100 

4 1200 1600 

 

This section explores the system level performance metrics, which are the expected 

demand for all the demand scenarios 𝐸(Ξ), and the total travel time in each 

individual scenario 𝑇𝑇(𝜉). Table 5-8 shows the results for five perfectly correlated 

demand scenarios that were generated using the approach in Pseudo-Algorithm 

6.1.4.  Table 5-8 shows the 𝐸(Ξ) for each of the demand scenarios, where there are 

1, 2,3, 4, or 5 total demand scenarios. The MDStrSODTA LP was solved 5 separate 

times to generate the results in Table 5-8.  Note that the individual 𝑇𝑇(𝜉) do not 

reflect system optimal system realizations due to the strategic path proportions. It 

is expected that  𝐸(Ξ) will be higher in the 2 and 4 cases because the demand is 

inflated. It may be noted that the additional deflated demand scenarios appear to 

lower the 𝐸(Ξ) as compared to the expected demand case. 
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Table 5-8 Multiple-destination, perfectly correlated demand Nguyen Dupius 

 
𝚵 = 𝟓 𝚵 = 𝟒 𝚵 = 𝟑 𝚵 = 𝟐 𝚵 = 𝟏 

𝑻𝑻(𝟏) 716.6 717.1 716.9 716.9 716.3 

𝑻𝑻(𝟐) 819.6 819.2 820.2 818.8 - 

𝑻𝑻(𝟑) 544.4 546.4 543.0 - - 

𝑻𝑻(𝟒) 1053.0 1049.8 - - - 

𝑻𝑻(𝟓) 395.4 - - - - 

𝑬(𝚵) 705.8 783.1 693.4 767.9 716.3 

 

Table 5-9 shows the similar results for the case where the demand is independent. 

However, there is an important caveat: while the expected demand in each case is 

the same, the remaining demand cases were all generated independently. In other 

words, the total demand was generated for when Ξ = 2, and then a different 

demand was generated for when Ξ = 3 and so on. To make Table 5-9 the exact 

same situation as the previous table, the total demand for case in the the Ξ = 5 

scenario would need to be created, and then the model data files adjusted for each 

case with fewer demand scenarios. However, in this approach, each model data file 

was generated separately from all the others. Therefore, the 𝑇𝑇(𝜉) varies 

significantly between demand scenarios because the demand itself varied. 
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Table 5-9 Multiple-destination, uncorrelated demand, Nguyen Dupius 

 
𝚵 = 𝟓 𝚵 = 𝟒 𝚵 = 𝟑 𝚵 = 𝟐 𝚵 = 𝟏 

𝑻𝑻(𝟏) 721.2 719.9 720.2 718.8 716.3 

𝑻𝑻(𝟐) 1258.3 840.3 1014.0 1111.1 - 

𝑻𝑻(𝟑) 360.4 313.4 224.1 - - 

𝑻𝑻(𝟒) 1707.3 2091.5 - - - 

𝑻𝑻(𝟓) 456.7 - - - - 

𝑬(𝚵) 900.8 991.3 652.8 915.0 716.3 

 

Next, this section presents the MDStrSODTA model results on the Sioux Falls 

network. The same parameters were utilized in this case: = 4, 𝑑𝑡 =  3 (Δ𝑡 =

0, 10, 20), 𝑇 = 100, Δ𝑡 = 120.  Table 5-10 shows the expected demand for the Sioux 

Falls network. Note that only 12 OD pairs are considered, and that the demand is 

lower than it was in the static case of Chapters 2, 3, and 4. 

Table 5-10 Expected demand for Sioux Falls 

 
20 18 7 6 

1 0 810 420 900 

2 430 0 1160 780 

3 730 250 0 270 

13 1200 260 590 0 
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It has previously been noted that the MDStrSODTA model grows in size very 

quickly. While the computation of the linear program is not of focus in this work 

due to the fact a commercial solver was utilized, a rough indication of the size of the 

linear program and the corresponding computational burden is shown below.  

Figure 5:10 shows the size of the linear program after CPLEX has performed the 

pre-solve treatment to eliminate variables and constraints, for each of the LP 

models where the Ξ = 1, 2,3, 4, 5. Of course, the size of the linear program grows 

linearly. The largest linear program had over 14 million variables. To provide an 

conceptual understanding of what this implies, note that while CPLEX was solving 

the 5 demand scenario case, it was using about 0.125 TB of memory. Nevertheless, 

the solve time was only about two hours. CPLEX is capable of solving significantly 

larger LPs. 

 

Figure 5:10 Size of LP on Sioux Falls network 
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Table 5-11 shows the results (in hours) of the perfectly correlated demand case on 

the Sioux Falls network. The 𝑇𝑇(𝜉) varies considerably more, indicating that the 

path proportions are considerably more important. In majority of cases, only one, 

two, or three paths are used; in only one instance do all four paths have a nonzero 

value.  While the demand was inflated by 20% between Ξ = 1 and Ξ = 2, the 𝐸(Ξ) 

increased by about 9%, and the difference in the 𝑇𝑇(1) and 𝑇𝑇(2) was about 12%. 

Table 5-11 Sioux Falls, perfectly correlated demand results 

 
𝚵 = 𝟓 𝚵 = 𝟒 𝚵 = 𝟑 𝚵 = 𝟐 𝚵 = 𝟏 

𝑻𝑻(𝟏) 3473.6 3487.8 3438.3 3449.7 3409.1 

𝑻𝑻(𝟐) 3932.4 3940.2 3925.7 3912.1 
 

𝑻𝑻(𝟑) 2628.7 2644.3 2588.8 
  

𝑻𝑻(𝟒) 5207.2 5162.5 
   

𝑻𝑻(𝟓) 1869.5 
    

𝑬(𝚵) 3422.2 3808.7 3317.6 3680.9 3409.1 

 

Table 5-12 shows the results for each of 5 demand scenario cases on the Sioux Falls 

network, for the case where demand is generated independently for each demand 

scenario. The 𝑇𝑇(1) varies more significantly among the five cases in the 

independent demand case. 
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Table 5-12 Sioux Falls, independent demand results 

 
𝚵 = 𝟓 𝚵 = 𝟒 𝚵 = 𝟑 𝚵 = 𝟐 𝚵 = 𝟏 

𝑻𝑻(𝟏) 3558.1 3690.6 3490.9 3531.6 3409.1 

𝑻𝑻(𝟐) 4802.5 5098.3 4678.8 4975.5 
 

𝑻𝑻(𝟑) 1480.7 1457.8 1492.5 
  

𝑻𝑻(𝟒) 6729.9 11075.2 
   

𝑻𝑻(𝟓) 1995.7 
    

𝑬(𝚵) 3713.4 5330.5 3220.7 4253.5 3409.1 

 

While the linear programming formulation presented here is theoretically sound, 

the explicit enumeration of paths is concerning in regards to scalability. The 

number of variables increases in a manner directly proportionally to the number of 

paths, which in general grows combinatorially with respect to the network size. 

Therefore, the overall complexity of the problem as stated becomes very 

challenging when applied to realistically sized networks. 

 In spite of the drawbacks of the problem complexity, there are several 

research directions which could aid in the development of scalable solution 

methods for this problem. Two issues must be addressed in order to manage 

problem complexity: increased complexity with respect to the number of demand 

scenarios, and increased complexity due to path enumeration. 

 In order to manage the problem complexity with respect to the number of 

demand scenarios considered, decomposition methods, namely Dantzig-Wolfe 
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decomposition techniques, lend themselves well for implementation on this 

problem. Because only the path proportion variables link the demand scenario-

specific problems, implementations of Dantzig-Wolfe decomposition akin to that of 

Li et al. (2003) show significant promise. 

 Managing the enumeration of paths also presents several potential avenues 

of research. On one hand, column generation methods are well documented as 

options for generating good solutions to problems in which path enumeration may 

be otherwise required. Furthermore, other alternatives can be conceived based on 

the extraction of time-dependent paths from non-path based DTA approaches such 

as that presented in Ziliaskopoulos (2000). While the problem of extracting such 

paths is not trivial, the computational advantages of avoiding the solving of a path-

based linear program may be significant.   

5.5 Concluding Remarks 

Chapter 5 introduced a novel strategic dynamic traffic assignment model that 

examines user responses to uncertain demand. Specifically, demand uncertainty 

was modelled in a scenario-based framework, and where it was assumed that users 

react to the uncertainty by generating strategic strategies prior to the observation 

of the network demand (but with knowledge of the set of demand scenarios). The 

model is formulated as a linear program, based on a path-centric representation of 

flow. Substantial formulaic development was presented to enhance previously 

known DTA modelling techniques. 
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 Numerical results were shown on the Nguyen Dupius and the Sioux Falls 

networks for demonstrative purposes, where the size of cells was considered quite 

large to maintain computational feasibility. Cell and link variation across demand 

scenarios was analysed, and computational complexity discussed. While the 

problem formulation and solution method are correct and sound, there are 

limitations regarding scalability due to the size of the linear program solved; both 

the number of demand scenarios considered and the path-based nature of the 

formulation severely affect the computational complexity of the problem.  
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6.1 Introduction 

As noted previously, the traffic network design problem (NDP) is one of the more 

challenging issues in the transportation research. Robust modelling approaches 

that provide systematic methods to determine the optimal distribution of a budget 

over a range of possible projects and quantify the corresponding system impact are 

vital for the success of transportation planning agencies around the world. 

However, introducing complexities such as dynamics or inherent network 

uncertainties, e.g., stochastic demand, results in a challenging mathematical 

problem to solve.  

 This chapter expands the strategic system optimal dynamic traffic 

assignment (StrSODTA) formulation from Chapter 6 to solve the capacity 

enhancement network design problem. A globally optimal solution to the StrSODTA 

NDP can be found due to the linear programming model at its foundation. The 

proposed work incorporates an enhanced version of a system optimal linear 

programming model proposed by (Ziliaskopoulos, 2000) that embeds the cell 
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transmission model to realistically propagate traffic through a network. Chapter 6 

propose the StrSODTA LP model that incorporates strategic route choice 

behaviour, demand scenarios based on a discrete distribution, and path based 

proportions. Strategic behaviour implies that users choose routes in a way to 

minimize travel time over a range of stochastic demand scenarios, instead of a 

single deterministic value. This results in a set of flows that are not an optimal 

solution to any single demand scenario, and thus display a day to day volatility that 

is commonly observed in traffic. The research in this work proposes simple 

modifications to apply the StrSO DTA LP to the NDP. 

 

Figure 6:1 Summary of research contribution 

This approach overcomes many issues associated with the traditional dynamic 

traffic assignment approach to the network design problem (i.e., is not simulation 

based or reliant on a link cost function), although it faces challenges in terms of its 

computational complexity. This work first presents the model formulation, and 

then demonstrates results on a sample network.  These results are analysed for a 

range of potential budgetary applications. Furthermore, this work examines the 

impact of the strategic approach as compared to the results that would be obtained 

 
Extension of StrSODTA LP to identify optimal cells and links for capacity 
addition 

Powerful, efficient formulation that reveals important network characteristics 
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using a single scenario expected demand approach. Finally, possibilities to address 

the issue of computational complexity are discussed. 

6.2 Background 

Chapter 7 focuses on a novel approach to solving the transport road network 

design problem, in which the optimal links in a network are identified in order to 

achieve some objective. Traditional approaches to the NDP that utilize a link cost 

function to represent vehicle movement become challenging nonconvex 

mathematical problems when a variable is added to the capacity term, as is 

thoroughly illustrated in Chapter 5. In these approaches, heuristic solution 

methods such as genetic algorithms are generally necessary. However, in the 

current application, the network design problem is represented as a linear program 

and can be solved easily and efficiently by commercial solvers such as CPLEX. 

 As previously discussed, the static network design problem is a popular and 

challenge topic in the transport modelling community. Examining network design 

from a dynamic perspective makes the problem when more complex, and the 

works on dynamic network design are more rare due to the difficult of formulation 

and solving the models. Some researchers have tried a genetic algorithm approach 

for the dynamic network design problem, a popular approach for the static  case 

(Wismans et al, 2012; Wismans et al, 2011b). Lin has produced a number of works 

related to the dynamic network design problem, including decomposition for the 

bilevel problem (Lin et al, 2011), a solution method based on the dual 
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approximation of the similar LP (Lin, 2011), and a genetic algorithm solution 

approach (Lin et al, 2009).  

 Dynamic network design approaches accounting for sources of uncertainty 

are also more rare. Approaches to accounting for demand uncertainty include a 

chance constraint, two-stage recourse model, or scenario-based simulation method. 

However, as seen previously in this thesis, simulation based approaches may face 

disadvantages because they are required to know the probability of each scenario 

in advance and it becomes computationally expensive when there are a large 

number of scenarios.   

 Waller and Ziliaskopoulos (2001) first uses a variation of this approach to 

examine the network design problem while accounting for stochastic demand. 

Additionally, Waller et al (2006) use the LP formulation to optimally solve for the 

continuous network design problem, a result which would not be possible given the 

usual non-convex formulations for the NDP.  Ukkusuri and Waller (2008) 

formulates a user-optimal version of this problem, which Karoonsoontawong and 

Waller (2005) use to compare results in the network design application accounting 

for stochastic demand. Do Chung et al (2011) propose a robust dynamic NDP, 

demand uncertainty using a set based robust optimization approach to account for 

demand uncertainty that also uses a linear programming approach at its 

foundation. All of these approaches in some way incorporate the linear 

programming SODTA model presented by Ziliaskopoulos (2000), which further 
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draws on Daganzo’s cell transmission model (Daganzo, 1994, 1995) to present a 

simple formulation of traffic flow that captures flow variability inside the link while 

avoiding the drawbacks associated with link performance functions.  

 The problem examined in this research differs from that in the literature in 

that it incorporates the concept of a strategic approach to equilibrium within a 

linear programming framework, and further captures the finer grain resolution 

phenomena observable through the use of CTM, and then uses this approach to 

investigate the impact on the network design problem. This work differs from 

previous approaches in the strategic approach to accounting for the impact of 

multiple demand scenarios, not just expected demand, when identifying optimal 

path proportions (instead of expected flows).  

6.3 Formulation 

The model presented in this work is the accumulation of a number of previous 

works. The StrSODTA model may be conceived as consisting of a two-stage 

approach; in the first stage, system optimal route proportions are determined so as 

to minimize expected total system travel time accounting for a finite range of 

possible discrete demand scenarios. In the second stage, the actual travel demand 

is realized, and the model outputs scenario-dependent flows. However, these flows 

will not represent a system optimal solution for any of the realized demand 

scenarios, thus representing the changing nature of traffic observed in reality and 
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additionally, introducing a variance in expected total system travel time for an 

optimal model that has not previously been possible. 

 First Section 6.3 briefly recounts the multiple destination StrSODTA LP 

mode. Next, the enhancements necessary for the NDP are formulated and 

explained. The model proposed in this work uses a linear program to realistically 

propagate traffic according to the cell transmission. As a result of the underlying 

CTM model, the objective function for this model is the expected total system travel 

time. This becomes simply the aggregate density of each cell 𝑖 ∈ 𝐶 for each time 

period 𝑡 ∈ 𝑇 for each demand scenario 𝜉 ∈ Ξ, multiplied by the probability of that 

demand scenario 𝑝𝜉 . 

Model: StrSODTA 

minimize ∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝜉𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

𝑖∈𝐶\𝐶𝑠𝜏∈𝑇𝐷𝑡∈𝑇𝜙∈Φ(μ)𝜇∈𝑂𝐷𝜉∈Ξ

  
(6.1) 

subject to  
 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

− ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑗𝑖
𝜉,𝜇,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,  
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶\(𝐶𝑟 ∪ 𝐶𝑠): 𝛿𝑖
𝜙

  

(6.2) 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

− ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶𝑠: 𝛿𝑖
𝜙

   

(6.3) 
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𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 𝜋𝜏
𝜇,𝜙

𝐷𝜏
𝜉,𝜇

 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶𝑟: 𝛿𝑖
𝜙

   

(6.4) 

∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ+(𝑖)

+ 𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

≤ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖
∈ 𝐶\𝐶𝑠            

(6.5) 

∑ ∑ ∑ ( ∑ 𝛿𝑖𝑗
𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

𝑖∈Γ−(𝑗)

+ 𝑥𝑡,𝜏,𝑖
𝜉𝜙

)

𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑁𝑡,𝑖 +  𝑔𝑖 

∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, ∀𝑖
∈ 𝐶\(𝐶𝑟 ∪ 𝐶𝑠)  

(6.6) 

∑ ∑ ∑ ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ−(𝑗)𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑄𝑡,𝑖 ∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖 ∈ 𝐶\𝐶𝑠 

(6.7) 

∑ ∑ ∑ ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ+(𝑖)𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑄𝑡,𝑖 ∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖 ∈ 𝐶\𝐶𝑟 

(6.8) 

∑ 𝜋𝜏
𝜇,𝜙

𝜙∈Φ(𝜇)

= 1 ∀𝜇 ∈ 𝑂𝐷, ∀𝜏 ∈ 𝑇𝐷 
(6.9) 

𝑦0,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝜏
∈ 𝑇𝐷 , ∀(𝑖, 𝑗) ∈ 𝐸       

(6.10) 

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 ,  
∀(𝑖, 𝑗) ∈ 𝐸 

(6.11) 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖
∈ 𝐶  

(6.12) 

𝜋𝜏
𝜇,𝜙

≥ 0 
∀𝜇 ∈ 𝑂𝐷, ∀𝜙
∈ Φ(𝜇), ∀𝜏 ∈ 𝑇𝐷 

(6.13) 
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The continuous NDP application of the LP StrSO model requires the addition of a 

budgetary constraint, and the modification of the constraints representing the 

physical characteristics of network links. The budgetary constraint specifies the 

cost for expanding the capacity of a link. For demonstration purposes, this work 

assumes a unit cost of 𝛽 to add 𝑧 units to the jam density of cell 𝑖, and that this 

amount will proportionally add 𝛼𝑖 = 𝑄𝑖/𝑁𝑖 units to the saturation flow of cell 𝑖. 

 Additionally, the NDP approach in this paper alters constraints (6.6)-(6.8) 

above to show the amount of capacity and flow that are added to a cell. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝜉𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

𝑖∈𝐶\𝐶𝑠𝜏∈𝑇𝐷𝑡∈𝑇𝜙∈Φ(μ)𝜇∈𝑂𝐷𝜉∈Ξ

  
(6.14) 

subject to  
 

∑ 𝛽𝑖𝑧𝑖

∀𝑖∈𝐶\𝐶𝑠

≤ 𝐺  
 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

− ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑗𝑖
𝜉,𝜇,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,  
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶\(𝐶𝑟 ∪ 𝐶𝑠): 𝛿𝑖
𝜙

  

(6.15) 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

− ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ−(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶𝑠: 𝛿𝑖
𝜙

   

(6.16) 



 

220 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

− 𝑥𝑡−1,𝜏,𝑖
𝜉,𝜇,𝜙

+ ∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑗∈Γ+(𝑖)

𝑦𝑡−1,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 𝜋𝜏
𝜇,𝜙

𝐷𝜏
𝜉,𝜇

 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖

∈ 𝐶𝑟: 𝛿𝑖
𝜙

   

(6.17) 

∑ 𝛿𝑖𝑗
𝜙,𝜇

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ+(𝑖)

+ 𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

≤ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇∗, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖
∈ 𝐶\𝐶𝑠            

(6.18) 

∑ ∑ ∑ ( ∑ 𝛿𝑖𝑗
𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜙

𝑖∈Γ−(𝑗)

+ 𝑥𝑡,𝜏,𝑖
𝜉𝜙

)

𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑁𝑡,𝑖 +  𝑔𝑖 

∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, ∀𝑖
∈ 𝐶
\(𝐶𝑟

∪ 𝐶𝑠)  

(6.19) 

∑ ∑ ∑ ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ−(𝑗)𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑄𝑡,𝑖 + 𝛼𝑖𝑔𝑖, ∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖 ∈ 𝐶\𝐶𝑠 

(6.20) 

∑ ∑ ∑ ∑ 𝛿𝑖𝑗
𝜇,𝜙

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

𝑗∈Γ+(𝑖)𝜏∈𝑇𝐷𝜙∈Φ(𝜇)𝜇∈𝑂𝐷

≤ 𝑄𝑡,𝑖 + 𝛼𝑖𝑔𝑖, ∀𝜉 ∈ Ξ, ∀𝑡 ∈ 𝑇, 
∀𝑖 ∈ 𝐶\𝐶𝑟 

(6.21) 

∑ 𝜋𝜏
𝜇,𝜙

𝜙∈Φ(𝜇)

= 1 ∀𝜇 ∈ 𝑂𝐷, ∀𝜏 ∈ 𝑇𝐷 
(6.22) 

𝑦0,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

= 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝜏
∈ 𝑇𝐷 , ∀(𝑖, 𝑗) ∈ 𝐸       

(6.23) 

𝑦𝑡,𝜏,𝑖𝑗
𝜉,𝜇,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 ,  
∀(𝑖, 𝑗) ∈ 𝐸 

(6.24) 

𝑥𝑡,𝜏,𝑖
𝜉,𝜇,𝜙

≥ 0 

∀𝜉 ∈ Ξ, ∀𝜇 ∈ 𝑂𝐷,
∀𝜙 ∈ Φ(𝜇), ∀𝑡
∈ 𝑇, ∀𝜏 ∈ 𝑇𝐷 , ∀𝑖
∈ 𝐶  

(6.25) 

𝜋𝜏
𝜇,𝜙

≥ 0 
∀𝜇 ∈ 𝑂𝐷, ∀𝜙
∈ Φ(𝜇), ∀𝜏 ∈ 𝑇𝐷 

(6.26) 
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As previously stated, unlike traditional approaches to the NDP, the application 

presented in this work does not require significant additional computational 

complexity as compared to the base model. Instead, the addition consists of only a 

single constraint and one decision variable for each cell. 

6.4 Model demonstration 

This section demonstrates the LP NDP model described in the previous section. 

First, results are presented on a small cell network for demonstration purposes. 

Then results are presented on the Nguyen Dupius and Sioux Falls networks.  

6.4.1 Model Demonstration: cell network 

A network consisting of 15 cells, 2 origins, and 2 destinations was selected in order 

to isolate the impact of the strategic approach on infrastructure expansion 

decisions. The origin cells are 1 and 2, while the destination cells are 14 and 15. 

This network consists of two arterial corridors and a small “highway” segment with 

greater flow and capacity.  
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Figure 6:2 Demonstration cell network and cell parameters 

This network contains three paths for each of the four possible origin-destination 

pairs. Tables 6-1 and 6-2 contains the demand parameters for this demonstration, 

including the aggregate demand in each demand scenario, the proportions of the 

total demand for each OD pair, and then the proportions of the OD demand that 

leave at each of the four included departure times; for simplicity, the departure 

time proportions are assumed to be the same for each demand scenario, following 

a “peak” pattern, but the total demand in each scenario as well as the proportions 

of the demand for each OD pair for each scenario are changing. This demonstration 

includes three demand scenarios representing the average congestion case, the 

lightly congested case, and the heavily congested case respectively. Forty time 

periods were simulated to ensure all demand was able to exit the network even in 

the heavily congested case.  

 Results are demonstrated under a varying budget, where the cost is 

𝛽𝑖 = $10,000 add one unit of capacity to a cell. The budget was varied from 0-
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200,000, or the equivalent of adding 20 units of capacity. Figure 6:3 displays the 

results for total system travel time (including all demand scenarios) corresponding 

with the varying budget for the cases of considering one demand scenario 

(equivalent to the expected demand case), considering the average and lightly 

congested demand scenarios, and considering all three demand scenarios.  

Table 6-1 Demand parameters for the demonstration network 

Demand Scenario Total Demand 
Proportion of demand for OD pair RS 

(1,14) (1,15) (2,14) (2,15) 

Average congestion case 210 0.3 0.2 0.2 0.3 

Light congestion case 190 0.4 0.25 0.2 0.15 

Heavy congestion case 230 0.43 0.2 0.17 0.2 
 

Table 6-2 Departure time parameters for the demonstration network  

OD Pair 
Proportion of OD demand at departure time 

τ = 1 τ = 2 τ = 3 τ = 4 

(1,14) 0.35 0.35 0.12 0.18 

(1,15) 0.15 0.55 0.2 0.1 

(2,14) 0.3 0.5 0.15 0.05 

(2,15) 0.25 0.45 0.15 0.15 
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Figure 6:3 shows a nonlinear decrease in total travel time with increasing budget. 

Additional analysis shows that including one, or two, or three, demand scenarios in 

order to solve for the optimal capacity additions in the demonstration network 

results in selecting generally (but not always) the same set of links. The largest 

percentage of the budget is added to cell 8 in all cases. However, the exact amount 

to be added to each cell differs, indicating that accounting for strategic behaviour 

will result in a different set of project rankings. 

 

Figure 6:3 Total system travel time for the StrSODTA NDP under a varying budget 

6.4.2 Model demonstration: medium networks 

This section demonstrates the NDP StrSO model on the Nguyen Dupius and Sioux 

Falls networks. The networks were decomposed and solved using the same 

approach that is described in 5.4.1. The only change in the current approach was to 

the AMPL model file, which was adapted to include the additional budget 
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constraint, the new decision variable 𝑧, and the proportional parameter that 

represented how additional density also affected additional flow. Table 6-3 shows 

the expected demand for the Nguyen Dupius network. Note that the same data files 

can be used for the NDP StrSODTA model as were used in the previous chapter. 

Table 6-3 Expected demand for the Nguyen Dupius network 

 
2 3 

1 1400 1100 

4 1200 1600 

 

Table 6-4 reveals the results for the network design problem on the ND network 

for the case where Ξ = 3. The table shows the cases where the budget adds 0, 25, 

50, 75, 100, and 125 “units” of density to the network. In this case, the model 

always identified the same set of cells to improve, cells 54, 55, and 56. The 

difference in the budget scenarios is the amount of capacity added to the cells and 

the corresponding reduction in 𝐸(Ξ). 

Table 6-4 Results for Nguyen Dupius network, correlated demand, where 𝚵 = 𝟑 

𝑩 0 25 50 75 100 125 

𝟓𝟒, 𝟓𝟓, 𝟓𝟔 - 33.3 16.7 25.0 33.3 41.7 

𝑻𝑻(𝟏) 5990.9 5769.8 5589.4 5423.8 5271.3 5130.2 

𝑻𝑻(𝟐) 7167.6 6899.2 6677.1 6473.4 6286.1 6112.8 
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𝑻𝑻(𝟑) 3952.8 3811.7 3701.6 3600.3 3506.6 3420.5 

𝑬(𝚵) 5703.8 5493.6 5322.7 5165.8 5021.3 4887.8 

𝚫𝑬 
 

3.7% 6.7% 9.4% 12.0% 14.3% 

 

Table 6-5 shows the identical experiment for the case where demand is 

independent and Ξ = 3. Again, the model identified the cells 54, 55, and 56 in every 

case, varying how much capacity was added in each case. Capacity was always 

evenly distributed between the three cells. 

Table 6-5 Results for Nguyen Dupius network, independent demand, where 𝚵 = 𝟑 

𝑩 0 25 50 75 100 125 

𝟓𝟒, 𝟓𝟓, 𝟓𝟔 0.0 33.3 16.7 25.0 33.3 41.7 

𝑻𝑻(𝟏) 5994.9 5776.6 5595.0 5431.1 5276.4 5137.0 

𝑻𝑻(𝟐) 9429.1 9070.9 8770.1 8493.5 8240.5 8002.4 

𝑻𝑻(𝟑) 1083.8 1079.3 1074.4 1068.5 1068.3 1072.7 

𝑬(𝚵) 5502.6 5308.9 5146.5 4997.7 4861.7 4737.4 

𝚫𝑬 
 

6.9% 9.8% 12.4% 14.8% 16.9% 

 

However, adding unlimited amounts of capacity to the same cells may not be a 

desirable solution, nor a realistic one. Therefore, the amount of density that was 

added to each cell was limited to 30. In this case, an increase of 30 vehicles for 
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every 120 second time step is the equivalent to 1800 vehicles per hour. The 

expected demand for the Sioux Falls network is replicated in Table 6-6. 

Table 6-6 Expected demand for the Sioux Falls network 

 
20 18 7 6 

1 0 810 420 900 

2 430 0 1160 780 

3 730 250 0 270 

13 1200 260 590 0 

 

Table 6-7 shows the system level results for the Sioux Falls network for the cases 

where Ξ = 1,2,3,4,5. The total budget was 𝐵 = 200.  

Table 6-7 Results for Sioux Falls network with correlated demand 

 
𝚵 = 𝟓 𝚵 = 𝟒 𝚵 = 𝟑 𝚵 = 𝟐 𝚵 = 𝟏 

𝑻𝑻(𝟏) 3290.7 3291.9 3266.8 3267.7 3239.2 

𝑻𝑻(𝟐) 3722.4 3720.6 3700.6 3697.2  

𝑻𝑻(𝟑) 2489.3 2492.5 2464.5   

𝑻𝑻(𝟒) 4822.6 4816.5    

𝑻𝑻(𝟓) 1772.8     

𝑬(𝚵) 3219.5 3580.4 3143.9 3482.5 3239.2 

 

Table 6-8 shows the design project selections for each of the five demand scenario 

cases for the Sioux Falls network, where the budget was 𝐵 = 200. The project 

selection was not the same for differing number of demand scenarios, indicating 
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that optimal project selection will change depending on the demand uncertainty 

accounted for in the modelling approach. The case where Ξ = 1 is the “expected 

demand” case, where the strategic demand scenarios are not accounted for. The 

project selection is different in this case than it is in any of the strategic demand 

cases.  

Table 6-8 Design project results for the Sioux Falls network: perfectly correlated 

demand 

Cell: 8 9 10 26 27 36 37 100 101 182 183 

𝚵 = 𝟏 30.0 30.0 30.0 4.4 4.4 - - 30.0 30.0 20.6 20.6 

𝚵 = 𝟐 30.0 30.0 30.0 - - 3.8 3.8 30.0 30.0 21.2 21.2 

𝚵 = 𝟑 30.0 30.0 30.0 - - 1.6 1.6 30.0 30.0 23.4 23.4 

𝚵 = 𝟒 30.0 30.0 30.0 20.3 20.3 4.7 4.7 30.0 30.0 - - 

𝚵 = 𝟓 30.0 30.0 30.0 19.5 19.5 5.5 5.5 30.0 30.0 - - 

 

Table 6-9 repeats the Sioux Falls network experiment, where the number of 

demand scenarios were tested for a fixed budget of 𝐵 = 200 for the independent 

demand case. This is the same demand data that was used in Table 5-12; recall that 

the demand is not the same between design scenarios, e.g., 𝑇𝑇(2) indicates a 

different demand for each of the columns (and the results are not directly 

comparable). However, 𝑇𝑇(1) is the same expected demand case which does not 

change; thus, the difference between 3506 seconds in the 4 demand scenario case 
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compared to 3295 in the 3 demand scenario case resulted from the different 

optimal path proportions in each case. However, the changes in optimal path 

proportions result from the model being solved for a different set of values for each 

demand scenario. 

Table 6-9 Results for Sioux Falls network with independent demand 

 
𝚵 = 𝟓 𝚵 = 𝟒 𝚵 = 𝟑 𝚵 = 𝟐 𝚵 = 𝟏 

𝑻𝑻(𝟏) 3344.3 3506.7 3295.2 3321.4 3239.2 

𝑻𝑻(𝟐) 4490.3 4753.7 4374.7 4643.3  

𝑻𝑻(𝟑) 1398.6 1385.6 1418.7   

𝑻𝑻(𝟒) 6215.1 10073.9    

𝑻𝑻(𝟓) 1899.5     

𝑬(𝚵) 3469.6 4930.0 3029.5 3982.3 3239.2 

 

Finally, the design project results are presented for the independent demand case 

on the Sioux Falls network in Table 6-10. Across all the demand scenarios (shown 

in rows), there were no new cells selected for capacity enhancement as compared 

to the correlated demand case. In other words, it was a similar set of optimal cells 

to add capacity in all cases, which is line with intuition and results from the static 

case. Finding the optimal locations to which to add capacity can be narrowed to a 

smaller set in the context of the entire network. However, the exact cells selected in 

each case (within the set), as well as the amount of capacity added to each cell, 

changed in the independent demand case. These results suggest that the difficulty 

in ranking network design projects may be in determining the proper model inputs 
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(specifically the appropriate demand and demand scenarios) because demand has 

a greater influence on the optimal capacity expansion in the network.  

Table 6-10 Design project results for the Sioux Falls network: independent demand 

 
8 9 10 26 27 36 37 100 101 182 183 

𝚵 = 𝟏 30.0 30.0 30.0 4.4 4.4 - - 30.0 30.0 20.6 20.6 

𝚵 = 𝟐 30.0 30.0 30.0 25.4 25.4 12.5 12.5 17.1 17.1 - - 

𝚵 = 𝟑 30.0 30.0 30.0 19.7 19.7 7.5 7.5 27.7 27.7 - - 

𝚵 = 𝟒 30.0 30.0 30.0 21.9 21.9 3.1 3.1 30.0 30.0 - - 

𝚵 = 𝟓 30.0 30.0 30.0 22.2 22.2 2.8 2.8 30.0 30.0 
  

 

6.5 Concluding Remarks 

This work proposed a system optimal network design model that accounts for 

stochastic demand using a strategic approach. In the strategic approach, the 

optimal path proportions are assigned so as to minimize the expected total system 

travel time in all demand scenarios. However, the actual path flows that will be 

manifested for a given demand realization will not consist of a system optimal 

solution for that individual demand realization. This work has presented an 

application of the StrSO DTA LP model to the network design problem, and results 

demonstrate the differences between accounting for the strategic approach and 

simply the expected demand case. The system optimal model in this work 
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represents a lower bound of the user equilibrium problem, but future work will 

examine a user optimal approach to representing strategic flows. 

 Future research directions focused on developing scalable versions of the 

problem were also discussed. Decomposition methods are conceptually promising 

in reducing the overall size of the LP solved, while path generation and path-flow 

extraction techniques could curb the effect of the path-based formulation on 

complexity.  
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Transport planning models play a critical role informing policy and decision-

making. However, due to the immense complexity in the underlying physical 

process, advances to the planning models, particularly those that account for 

sources of uncertainty and stochasticity, continue to be a vital pursuit for 

researchers. 

 This thesis proposed a framework that accounted for day-to-day uncertainty 

in traffic assignment models known as the strategic approach. The name of this 

method stems from one of the core assumptions: users employ a strategy to make a 

route choice. In this thesis, the day-to-day demand was assumed to be a random 

variable with a known distribution, which users also have knowledge of (gained 

through past experience travelling the network). The basic assumption in this 

framework is that users are homogeneous and risk neutral, and therefore they 

employ a strategy to minimize their expected travel time. This is an extension over 
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deterministic approaches, in which users choose a route to minimize a total travel 

time that does not account for any system variability. 

 The strategic framework results in a two-stage model. In the first stage, 

users employ their strategy and choose their expected least cost path, which they 

do not deviate from regardless of experienced travel conditions. In the second 

stage, users travel on their chosen route and network conditions manifest. One of 

the key points of the strategic framework is that the second stage travel realization 

will result in an equilibrium based on flow proportions. While the route choice of 

travellers in the second stage remains fixed, the number of people who choose to 

travel will change and therefore the network conditions and corresponding 

network performance metrics will vary.  

 The strategic approach encompasses numerous advantages. Based on the 

use of a travel demand distribution, the variation in travel time both on the link and 

the system levels can be quantified and compared. Therefore, the strategic 

approach could be used to identify areas in the network that are particularly 

unreliable. One of the most challenging aspects of transport planning models lie in 

the need to apply the theoretical models on practically-sized problems, which due 

to the core assumptions of the proposed framework, is relatively straightforward in 

the strategic approach. Additionally, planning models are relevant and useful 

because they can be applied to numerous useful applications. Again, the 

assumptions at the core of the proposed framework make the modelling 
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approaches ideally suited for numerous applications and future extensions such as 

tolling and network design. 

 Chapters 2, 3 and 4 of this thesis explored time invariant strategic modelling 

approaches. In addition to the user equilibrium model in which the strategy was 

based on myopic user behaviour, this thesis introduced two variations, in which the 

strategies were based on minimize expected total system travel time and variation 

of total system travel time. 

 Additionally, Chapter 3 explores a first best pricing application of the 

strategic framework, including the introduction of a marginal social cost based 

pricing model. While the strategic approach accounts for day-to-day demand 

uncertainty, uncertainty in the forecasted long term planning scenario presents 

another challenge for planners and researchers.  Therefore, this thesis also 

proposed a method to compare model predictions under short term uncertainty, 

and additionally under long term planning scenario uncertainty. Results show that 

if long term uncertainty is not accounted for, model predictions may overestimate 

the impact of a pricing scheme. Additionally, long term demand uncertainty is 

shown to have a significant impact on the robustness of the network. 

 Finally, Chapter 4 explored a network design application. In addition to day-

to-day demand uncertainty, there also exists an important uncertainty in the daily, 

operational capacity that may have a significant impact on user route choice, and 

therefore on the project rankings that result from an equilibrium traffic assignment 
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modelling evaluation. Therefore, Chapter 4 employed an extension to the strategic 

user equilibrium approach that includes day-to-day capacity uncertainty, where the 

capacity on each link is a random variable with a known distribution. Users then 

chose an expected least cost route based on this distribution, and then a day-to-day 

scenario realization takes place where they decide whether to travel. A network 

design model including day-to-day demand and capacity uncertainty was proposed, 

along with a solution method based on a tailored genetic algorithm. Results 

demonstrated the complexity of the network design problem under uncertainty, as 

well as the importance of considering multiple sources of uncertainty when 

ranking network design projects. 

 In Chapters 5 and 6 of this thesis, the assumption of time invariance was 

relaxed. Dynamic network modelling approaches are important because they can 

capture network effects that are fundamentally non-static in nature, such as 

queueing and backwards wave propagation. However, dynamic traffic assignment 

models increase significantly in complexity as compared with their static 

counterparts and are under-utilized in practice. 

 Chapter 5 introduced the strategic system optimal dynamic traffic 

assignment model. This model is powerful due to the linear programming 

formulation at its core, which allows well-established solution methods to be 

applied. The model proposed in Chapters 5 and 6 is based on an established linear 

programming based system optimal model that does not account for any sources of 
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uncertainty. While the system optimal assumptions at the foundation of the model 

in Chapters 5 and 6 mean that it does not describe user behaviour, it is still a useful 

model to determine important network characteristics and as a lower bound on the 

total travel time in a network. Chapter 5 introduces the model and solution 

approach to transform the static planning data used for testing purposes in Chapter 

2 to the dynamic network problem. This will allow the models, evaluations, and 

performance metrics to be roughly compared which may have interesting 

implications for both specific networks and for static versus dynamic modelling in 

general. 

 As with all models, a number of defendable, yet restrictive, assumptions 

were required in this thesis in order to make the models tractable and to reduce 

the problem complexity. In Chapters 2, 3, and 4, these assumptions included a 

homogeneous, risk neutral user populations, a lognormally distributed demand, a 

specifically structured travel cost function, a first best tolling structure, and a 

specific design scenario. The assumptions in Chapters 5 and 6 included a system, 

not user, optimal user behaviour, a specified stochastic demand based on scenarios, 

a limited number of paths and departure times, a high discretization time step for 

the cell transmission model, and network design capacity additions that were 

specific to a cell, not the entire link. 

 Each of these assumptions points the way towards an interesting topic for 

future research. For the time invariant strategic model, the next step may be 
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relaxing the risk neutral assumption, i.e., incorporating a late arrival penalty in the 

route choice decision-making. This would incorporate a measure of reliability into 

user route choice, where a person would be less likely to choose a route if it had a 

substantial possibility of causing a late arrival. Additionally error in user 

perception and multiple user classes could be included. 

 Traffic assignment is only one piece of the transport planning process, in 

particular the four step planning process. Another avenue of future research would 

be to integrate a strategic component into the trip generation, trip distribution, and 

mode choice models, as well as the traffic assignment framework that was 

proposed in this thesis. An integrated, comprehensive framework would allow for 

the use of a feedback mechanism, where the estimated costs from the strategic 

traffic assignment model could lead to an adjusted trip distribution model, which 

could then adjust the forecasted travel demand distribution as an iterative process. 

 One of the benefits of the strategic framework is that it could be applied to 

practically sized problems, such as the Sydney regional network, composed of 

approximately 60,000 links and an expected demand of 1.3 million, shown in 

Figure 7:1. The next step to achieving this goal and another avenue for future 

research may be to adjust the solution approach to account for the tailing effect of 

the Frank Wolfe method.  With an adjusted solution approach, the strategic 

framework could be solved more quickly on substantially sized networks. 
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Figure 7:1 Sydney city network, a large-scale network that the StrUE model may be 

applied on in the future 

 The dynamic strategic model shows equal promise in terms of future 

research. As discussed in the concluding remarks of Chapters 5 and 6, issues like a 

decomposition scheme to reduce the size of the linear program could improve the 

performance of the model. Additionally, the variance of total system travel time is a 

quadratic equation that could be used as an objective function that would lead to a 

quadratic program, which can still be solved by CPLEX. The variance of total travel 

time would provide an interesting measure of reliability, similar to what was 

discussed in Chapter 2, that has never been examined on a dynamic network. 

 The topics discussed in this thesis will continue yielding prolific research 

possibilities and lead to deployable models for practitioners in the future. 
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