
Establishing Trust Between Fully-Connected
Autonomous Vehicles

Jordan Hedges

School of Computer Science

The University of Western Australia

21296484@student.uwa.edu.au

Chris McDonald
∗

School of Computer Science

The University of Western Australia

Chris.McDonald@uwa.edu.au

Abstract

The development of autonomous vehicles by automotive and technology companies, is an exciting and active
area of research receiving much media attention. Fascination extends from the independence of these vehicles,
gained by measuring their local environments using a number of sensing and imaging technologies. The
widely adopted SAE International’s Levels of Driving Automation define a six-level scale describing vehicle
independence, with higher levels indicating more sophisticated automation. Contemporary research has
recently developed vehicles rated at level-3 in which vehicles can operate autonomously but do not support all
driving modes, such as high speed highway driving or low speed traffic jams and, in an emergency, require
driver intervention. To attain higher levels of driving automation vehicles must be able to reason about their
environment to be able to support all driving modes and to react in emergencies. To achieve this, research
must extend to fully-connected vehicles, in which vehicles become more aware of their environment, at greater
distances, by communicating with other vehicles and transport infrastructure.

The speed and latency communication requirements of fully-connected vehicles preclude their use of 4G
and even 5G telephony networks. Instead, vehicles will communicate using localised and temporarily-formed
vehicle ad-hoc networks (VANETs). Without a centralised authority, VANETs are susceptible to malicious
attacks from vehicles and even roadside infrastructure, which can transmit falsified information about vehicles’
motion and road conditions. Such attacks have the potential to disable individual vehicles, dramatically
increase congestion, and even cause potentially fatal accidents. Past research has attempted to address this
problem using roadside units (RSUs), devices which supply services such as temporary authentication or
systems to prevent identified malicious actors from communicating. However, these units will incur a large
cost to set up, will have a transition period before they are operational and, particularly in a large country
such as Australia with remote areas, cannot offer full coverage.

To better support the detection of falsified or simply errant information, we present a decentralised
system which establishes localised reputation- and trust-based networks between fully-connected vehicles.
Information received by each vehicle is verified by calculations that match data from physical systems on the
vehicle and the degree of consensus about the same information also received by neighbouring vehicles.

∗Corresponding author

1

I. Introduction

Autonomous vehicles, at least in the prototype
stages, have arrived. Alphabet’s subsidiary
Waymo [19], Uber [1] and Tesla [9] all have
prototypes on the road in American cities with
Waymo even offering free rides in its prototype.
Government bodies and advocate groups such
as the Australian Driverless Vehicle Initiative
cite avoidable costs due to traffic as potentially
$53.3 billion per annum by 2031 in addition to
$27 billion due to crashes [7]. Industry, and
trucking companies in particular, are interested
in reducing their transport costs for a potential
saving of US $168 billion per year for the US
alone [4]. However to achieve these projected
savings, greater levels of automation than those
currently deployed in the prototypes are re-
quired.

The highest level of automation as described
by SAE International [17], level 5, could be de-
scribed as “no human required” the system is
in full control and no human is required, even
in an emergency. The full table of these au-
tomation levels is presented in table 1. It is
generally accepted that to achieve this level of
automation vehicles would need to communi-
cate both with each other and with traffic in-
frastructure forming a vehicle ad-hoc network
(VANET). VANETs are a specialised form of
mobile ad-hoc network (MANET). As noted by
Blum, Eskandarian and Hoffman [3], VANETs
are characterised by “rapid but somewhat pre-
dictable topology changes, with frequent frag-
mentation, a small effective network diameter,
and redundancy that is limited temporally and
functionally”citeChallenges.

With autonomous vehicles increasingly car-
rying and interacting with humans there is also
a need for, and interest around, the safety and
robustness of autonomous vehicles. Reports,
such as the “Exploring Cyber Security Policy
Options in Australia" report, authored by the
RAND Corporation in conjunction with the
Australian National University [14] are an ex-
ample of this. It includes consultation with

Level Description
0 The full-time performance by the

human driver of all aspects of the
dynamic driving task, even when
enhanced by warning or interven-
tion systems.

1 The driving mode-specific execu-
tion by a driver assistance sys-
tem of either steering or acceler-
ation/deceleration using informa-
tion about the driving environment
and with the expectation that the
human driver perform all remain-
ing aspects of the dynamic driving
task.

2 The driving mode-specific execu-
tion by one or more driver assis-
tance systems of both steering and
acceleration/deceleration using in-
formation about the driving envi-
ronment and with the expectation
that the human driver perform all
remaining aspects of the dynamic
driving task.

3 The driving mode-specific perfor-
mance by an automated driving sys-
tem of all aspects of the dynamic
driving task with the expectation
that the human driver will respond
appropriately to a request to inter-
vene.

4 The driving mode-specific perfor-
mance by an automated driving sys-
tem of all aspects of the dynamic
driving task, even if a human driver
does not respond appropriately to
a request to intervene.

5 The full-time performance by an au-
tomated driving system of all as-
pects of the dynamic driving task
under all roadway and environmen-
tal conditions that can be managed
by a human driver.

Table 1: SAE International automation levels [17]

2

stakeholders as well as war-gamed cyber se-
curity examples and specifically mentions ve-
hicles as requiring stringent standards to be
protected.

This interest in safety is no surprise, as a re-
view of possible use cases for VANETs [10] cov-
ers not only the driving of a vehicle, but rout-
ing multiple vehicles including speed matching;
this is in addition to interaction with users and
potentially exposing their private information
in order to schedule. These “basic" VANET fea-
tures are in addition to contemporary research
aiming to add more complex features, with a
particular focus on inter-vehicle communica-
tion to enable these features. However, with
an increasing amount of data and reliance on
this data comes increasing risk of, and opportu-
nities to, attack or disrupt the system whether
via false information injection or attacks against
the wireless communications layer. This could
be accidental, due to measurement or commu-
nication error, or malicious, against the VANET
and its data, or even the vehicles’ operating
systems.

If the information gained from a VANET is
to be safely utilised and relied upon, it must
first be verified. Malicious information in the
network would degrade the usefulness of the
network and potentially lead to life threatening
accidents. It is not enough that a VANET be
secured using traditional cryptography, which
is reasonably possible despite the challenges
of a VANET [6]. Even though the communica-
tions themselves might be secure, a malicious
actor only has to misinform its communication
partners in order to create chaos. Accordingly,
some measure of the objective truth for all the
system information must be derived and then
used to inform the workings of the network
and the driving of the vehicles.

To mitigate data integrity risks previous
uses of VANETs have deployed roadside units
(RSUs) [11], roadside infrastructure that par-
ticipate in the VANET in a variety of ways,
such as by message forwarding. This will be
problematic as, until the RSU infrastructure is

in place, vehicles will be unable to function
correctly with any system that requires them.
Even once RSU deployment has begun, it may
be many years before the system has adequate
coverage and, in places such as remote Aus-
tralia, coverage may never be provided. Even
in a metropolitan area RSU deployment will
“incur high cost" and “is difficult in the near
future" [8]. Therefore our proposed system for
deriving trust in a vehicle does not currently
rely on any RSUs.

Therefore, the system proposed will require
each vehicle to maintain and derive their own
trust in vehicles it has contact with. This will
require that each vehicle is able to process in-
formation it receives from other vehicles. This
will be done using information it knows is cor-
rect from physical sensors, such as angle-of-
arrival, signal strength or shared information
from trusted sources, and combining these to
determine the veracity of received information.

II. Method

To begin, a simulator must be selected so that
the proposed model can be implemented and
then tested. The simulator itself should not be
a barrier to implementation, given enough time
the results should be replicable in another open
source simulator.

i. Simulator Selection

In order to test trust solutions and attacks
against these solutions, a vehicle simulator with
certain attributes was required; Various simula-
tors were therefore reviewed and selected from
against the following criteria:

• Source code access: As no simulator found
implemented or permitted experimenta-
tion with trust ideas, the source code of the
simulator must be accessible to implement
these ideas. Open source or less restrictive
licenses were the most desirable.
• Programming language: In order of prefer-

ence, we sought simulators written in the

3

C++, Java, or C programming languages.
• Up to date: Simulators that are regularly

updated or have reached a completed state
were preferred in addition to being respon-
sive to fixing bugs.
• Readability and documentation: Simula-

tors with readable and well organised
source code, in addition to being well doc-
umented were preferred.
• Network and vehicle integration: A simu-

lator that has both network simulation and
vehicle simulation in a single program and
did not require separate network simula-
tion and vehicle simulation were preferred.

The simulators examined were TraNS [16],
GrooveNet [12], VANETsim [21] and au-
toauto [13].

• TraNS: TraNS is open source as preferred
and licensed under the Apache license ver-
sion 2. TraNS is programmed in Java, the
second preference. TraNS’ last update was
February 3rd 2009, although it is unclear if
it is still being developed. TraNS is both
readable and documented, source files are
clearly organised and a javadoc is included.
TraNS combines both ns2 and SUMo to
simulate a VANET, not a single simulation
as preferred.
• GrooveNet: GrooveNet is open source as

preferred, although its license status is un-
clear the source code is publicly available.
GrooveNet is programmed in C++ as was
the first preference. GrooveNet is not up to
date with the last change committed on the
12th of July, 2013 with a TODO list of in-
tended changes still visible. GrooveNet
is readable and well documented, with
documentation and guides available on its
homepage [15]. As preferred, GrooveNet
combines both network and vehicle simu-
lation in a single, unified program.
• VANETsim: VANETsim is open source as

preferred and licensed under the GNU
GPL license, version 3. VANETsim is pro-
grammed in Java, the second preference.

As of the 4th of April, 2017 VANETsim is
no longer updated. VANETsim is readable,
with a well organised structure and has
available a javadoc and doxygen output
for documentation. VANETsim combines
both network and vehicle simulation as
preferred.
• autoauto: autoauto is a locally written open

source simulator, released under a creative
commons license. autoauto is programmed
in C++, as preferred. autoauto is up to date
as preferred, with its current (unreleased)
version being version 1.15. autoauto is read-
able with a clear file structure and doxygen
used for documentation as preferred. au-
toauto combines both vehicle simulation
and network simulation as a single pro-
gram as preferred.

From this list, autoauto was selected as it ful-
filled all the preferences given, in addition to
the availability and proximity of expert advice.

ii. Proposed Model

As it is expected there will not be any sup-
porting infrastructure such as RSUs at least for
some period before they are established or, pos-
sibly never in rural areas, the proposed model
should not rely upon them. This choice makes
the establishment of trust more difficult, the
RSUs in other model generally either facilitate
functions that allow easier trust establishment
or act as a trusted source. As there will be no
RSUs each vehicle should be able to be driven
with no other vehicles supporting it; each ve-
hicle should have its own way to evaluate the
trustworthiness of other vehicles. This evalua-
tion includes tests considering physical prop-
erties such as wireless packets’ signal strength
and angle-of-arrival; this means the informa-
tion will always be correct.

The proposed model is that each vehicle is
equipped with a device named a TrustModule
that derives the trust placed in other vehicles
based on received information. This device
will sit between the vehicles’ driving logic and

4

the reception of the packet. The TrustModule
will also keep a history of sent information
so that other vehicles can enquire about sent
information and to provide a more nuanced
trust rating of another vehicle.

In the autoauto simulator, each vehicle broad-
casts an update to all other vehicles within
range ten times per second; receiving vehicles
record each packet’s arriving signal strength
and angle or arrival. This update includes the
senders’ position and size, vehicle type, pre-
vious, current and next turns as well as their
speed, acceleration and heading. In the original
implementation, with no malicious attackers,
these packets were then immediately passed on
to the vehicles’ driving logic. With the addi-
tion of malicious attackers it is important that
any information passed to the driving logic is
correct, this is a logical point to place the verifi-
cation logic.

Each packet will be individually assessed
by tests that attempt to use physical charac-
teristics of the received packet to corroborate
their information and assigned a result as to
how trustworthy each packet is. These packets
will then form the history used to determine
whether a vehicle is trustworthy over time. This
is necessary as basing the trust in a vehicle on a
single packet could lead to attacks that simply
alternate malicious and non-malicious packets,
some record is necessary. In order form a trust
rating based on multiple packets received over
time, each vehicle will also keep a history of
packets they have received as proposed by Chen
and Wei [5]. This history will keep the entire
packet and the results of the tests performed
upon it, this will allow the history to then be
weighted to produce a temporal effect on the
trust in old data.

iii. Assumptions

To facilitate our proposed model the following
assumptions are made about the equipment of
the vehicle and vehicular communication:

• Vehicles carry a GPS receiver to determine

their absolute position and global time
• Vehicles can determine the signal strength

and angle-of-arrival of wireless packets
• Vehicles can encrypt their point-to-point

communications via a method such as by
Gazdar et al. [6]
• Vehicles carry a standard wireless transmit-

ter operating on a common transmission
frequency, and are able to vary its trans-
mission power

To improve a vehicle’s resistance to false in-
formation being injected into the network, a
device named a TrustModule is implemented to
review incoming transmissions.

iv. TrustModule

The TrustModule device attempts to determine
the trustworthiness of each packet’s informa-
tion. Every vehicle is equipped with its
own TrustModule which receives and assesses
whether the packet is trusted enough to be
acted upon by the vehicle, i.e. passed to the
driving logic. Depending on the TrustModule’s
assessment, the driving logic may or may not
receive the packet, akin to a network firewall
either forwarding or dropping packets. Thus,
with a negative result, the vehicle functions as
if it had not received the packet at all and with
a positive result the driving logic will received
the packet and will function as if the TrustMod-
ule was not active. Thus the TrustModule does
not directly control any aspect of the driving
computation.

The TrustModule combines the weighted re-
sults of four tests to produce a result in the
range [0, 1] and accepts the result if the result
is above a given number in the range [0, 1] sim-
ilarly to Gazdar et al. [6]. These are combined
simply via multiplication of the weight with the
Boolean result of a test. Given a list of Boolean
packet test results r and the weights of the test
results w the result for a packet p is:

resultp = ∑
i

wi · ri

5

then simply, for a packet acceptance threshold
tpacket if the following is true:

resultp ≥ tpacket

the packet is accepted. This means the packet
will be passed onto the history with a positive
result. Once a packet is in the history, a trust
rating for the sending vehicle is updated, if this
passes the required threshold the most recent
received packet is passed to the driving logic.

TrustModule History
The TrustModule maintains a history of a con-
figurable number of received packets in order
to facilitate further processing and to report to
other vehicles, if questioned, the details of a
recently received packet. This also allows the
final trust rating in a given vehicle to be a com-
bination of all the stored packets in addition to
the most recently received packet.

Initially, when the history is empty trustv, the
trust in any given vehicle v will be by default
0.5, positive and negative results of packets will
then increment or decrement this rating by de-
fault by 0.1 depending on the result. This is
simply to give a rough estimate to how truth-
ful the vehicle has been previously, with no
weighting given based on how recent the in-
formation is while a history is built up. Once
the history is built up each individual packet
is then weighted based on how recently it was
received.

“Bootstrapping” that is, determining whether
a vehicle is trustworthy with zero prior infor-
mation, particularly when a vehicle is just be-
ginning their journey and have no received in-
formation. This was noted to be a problem by
Abdul-Rahman and Hailes [2] and leaves a ve-
hicle open to manipulation by malicious actors
when they supply their trust recommendations.
Their proposed solution was to have a set of
trusted nodes that could always be relied upon
to provide correct information. As the pro-
posed VANET does not include any RSUs, and
intersections would likely not provide enough

coverage, the authors proposed solution would
not work in the proposed trust model.

To counter this, the following is proposed;
when a vehicle receives a packet from another
vehicle it has no history for, call this vehicle
B, the receiver, A, will broadcast a request to
be informed about the how trustworthy the
sender is. Vehicles receiving this broadcast re-
quest will then consult their history for how
trustworthy the requested vehicle is and place
this into their response, call the sender of one of
these responses, C. Once this response packet is
received by A, if C is above the trust threshold
the trust in B will then be increased. The trust
in B will be increased by the trust the C places
in B, weighted by the trust A places in C, see
below:

trustAinB = trustAinC ∗ trustCinB

This, in addition to the default settings, allow
a sender to be quickly classified as either trust-
worthy or not trustworthy before the receiving
vehicle has a complete history and will reduce
the period of vulnerability during which the
receiving vehicle could be manipulated.

Individual packets’ results can further be
weighted to provide a decreased trust in older
events or a threshold, such as employed by
Shaikh and Alzahrani [18]. Then, given a list of
weights w and a matching size history of pack-
ets results h the trust result for a given vehicle
v will be:

trustv = ∑
i

wi · hi

A decreasing trust weighting in earlier pack-
ets’ results means more credence is given to a
vehicle’s current behaviour. These weightings
will depend on how the user theorises the ve-
hicle may be attacked, potential attackers may
attempt to flush other vehicles’ history with
“nonsense” packets in order to increase their
trust rating after launching an attack. Although
the packets may themselves be correct, their
purpose is to flush any wrongdoing from the
history of the receiving vehicle. This may mean

6

history weightings that favour older packets
may be useful.

The trust in another vehicle will be used to
determine whether a packet is passed to the
driving logic, simply if trustv ≥ tvehicle, the
trust in a vehicle v is greater than or equal to
the pre-set trust threshold tvehicle. With the
default settings, tvehicle = 0.5, this would occur
at the beginning with only a single trusted
packet. However, once the history is full all
the packets results will have to be weighted
and summed to determine whether a packet is
passed to the driving history.

TrustModule Verification Methods
The following are the four tests used to
determine if a packet’s data is meaningful.
Their true or false results are combined using
either a default equal weighting, or with a user
provided weighting.

OnMap
The OnMap algorithm determines whether a
vehicle’s claimed co-ordinates and past, cur-
rent and next goal turn align. Outside of a
simulation, this may be achieved by the use of
GPS maps which would then be required to
be updated regularly for the test to be accu-
rate. Given a claimed position from a packet px

and py and the current turns the vehicle is in
between pt0 and pt1 this algorithm determines
whether the claimed coordinates actually lie on
a road. First, the algorithm establishes, using
pt0 and pt1 the road section this forms; this
gives the four corners rul , rur, rll and rlr the
upper left, upper right, lower left and lower
right corners respectively. Then to determine if
a point is within the provided point set forming
the road the winding number of the point for
the provided point set is calculated. The wind-
ing number is the number of times a curve
makes a full counter-clockwise turn around the
origin, if the curve is instead a polygon and the
origin a provided point, it can be determined if
the point is in the polygon. If the winding num-
ber is zero, the point is outside the polygon,

otherwise it is inside. To calculate the winding
number, an existing implementation by Dan
Sunday [20] was used.

Then if the point is determined to be within
the road claimed by the provided past and
current goal turns, the algorithm will return
true, otherwise it will return false.

CosineSimilarity
This algorithm determines the cosine similar-
ity, how similar two vectors are based on their
orientation and magnitude, which is bound
between [−1, 1]. Two perpendicular vectors
have a similarity of zero, and two vectors of the
same magnitude but opposing directions have
a similarity of -1. In a positive (x, y) region, co-
sine similarity is instead bound between [0, 1].
The specific formulation for vehicles of the gen-
eral formula for vectors is given by Chen and
Wei [5]. The vector is composed of the vehicle’s
co-ordinates and its velocity. The algorithm
takes in the received packet and the threshold
t for how similar vectors must be to return a
positive result. To calculate the cosine similar-
ity the algorithm requires an estimate vector
to compare to the claimed vector in the packet.
These vector’s components are named xe, ye

and ve for the estimate vector and xo, yo and
vo for the claimed vector. An estimate vector is
obtained by using the last obtained packet from
the sending vehicle and calculating based on
heading, speed and acceleration information.
For a given packet p for xe is equal to:

xe = px + (pspeed/r) ∗ cos(pheading)

where r is the update rate per second. Similarly
ye is equal to:

ye = py + (pspeed/r) ∗ sin(pheading)

Finally ve is equal to:

ve = pspeed + pacceleration

ve, the estimated velocity is the speed the car
was travelling plus its acceleration at the time
the packet was sent. Then, taking the estimate

7

and the claimed vector, the cosine similarity
formula is:

xe · xo + ye · yo + ve · vo√
x2

e + y2
e + v2

e
√

x2
o + y2

o + v2
o

If the cosine similarity is higher than the
given threshold tcos, then true is returned,
otherwise false is returned.

SignalDistanceVerification
This algorithm attempts to verify whether the
claimed distance from the receiver approxi-
mates the received signal strength sent by a
standard transmitter. This algorithm requires
the distance in metres from the sender, derived
from the co-ordinates in the packet, d, the fre-
quency in GHz, f , the receiver and transmit-
ter’s gain in dBm, Rgain and Tgain respectively
and the received dBm, RdBm. First the theo-
retical loss, l, that would occur for distance d
and frequency f is calculated. Knowing the
presumed strength of the transmission signal
Ttrans in dBm, and with a 10 dBm fade mar-
gin if Ttrans + Tgain + Rgain − l − 10 is less than
the receive sensitivity of the receiver, the algo-
rithm returns false. Otherwise, the algorithm
attempts to check whether RdBm is accurate for
the provided d, via applying the FSPLInverse
algorithm. Provided the loss in dBm and a
frequency in GHz, FSPLInverse will return the
distance required to achieve this loss, inverting
the free space path loss equation. Thus if:

|d− FSPLInverse(RdBm, f)| ≤ ε

for some ε representing the error, the algorithm
will return true, otherwise it will return false.

GeometryVerification
As defined by Shaikh and Alzahrani [18], this
algorithm attempts to verify whether the po-
sitional information in a packet is accurate.
The algorithm requires the angle the packet
was received on, θ, derived from always ac-
curate physical sensors, with a known max

distance the signal could travel, dmax and the
sender’s co-ordinates, xs and ys. The receiver’s
co-ordinates, xc and yc are also required to be
known. The algorithm then defines a region
by four points, xl , xu, yl and yu based on the
provided information. The values of xl , xu, yl
and yu depend on θ and are given by:

0 < θ ≤ 90◦ : xl = xc

xc = xc + dmax · cos θ

yl = yc

yu = yc + dmax · sin θ

(1)

90◦ < θ ≤ 180◦ : xl = xc + dmax · cos θ

xu = xc

yl = yc

yu = yc + dmax · sin θ

(2)

180◦ < θ ≤ 270◦ : xl = xc + dmax · cos θ

xu = xc

yl = yc + dmax · sin θ

yu = yc

(3)

270◦ < θ ≤ 360◦ : xl = xc

xu = xc + dmax · cos θ

yl = yc + dmax · sin θ

yu = yc

(4)

Finally, the algorithm checks whether sender
has provided correct information by checking
whether the following inequalities are satisfied:

xl − ξ ≤ xs ≤ xu + ξ

and
yl − ξ ≤ xs ≤ yu + ξ

where ξ represents the error, returning true if
they are satisfied, false otherwise. This can
be user defined and is currently defined as
one metre. As also outlined by Shaikh and
Alzahrani [18], when the region formed by the

8

above calculations is tested with claimed po-
sition, the algorithm is not guaranteed to pro-
duce correct results for all points in the region.
As noted by the authors, the percentage of the
region from which correct results can be de-
rived ranges from 84% to 100% depending on θ.
The region percentage derived by Shaikh and
Alzahrani [18] is defined as:

FLDA =

[
1− dmax cos θ · dmax sin θ

π · (dmax)2

]
100

Alone, this algorithm only determines if the
co-ordinates could potentially have come
from a large region indicated by the angle θ,
therefore it is only effective in combination
with the other algorithms.

TrustModule Consultation
In addition to the tests performed by a single
vehicle whenever it receives a packet, it will
also request all nearby vehicles’ record of this
same packet. In order to choose the correct
packet, the requesting vehicle specifies the po-
sition from where the packet was claimed to
have been sent, and the identity of the sender.
As there may be multiple packets sent from this
location, i.e. from a stopped vehicle, the most
recent packet from the history is chosen. As the
request for the packet is sent before any more
packets can be transmitted by the sender, choos-
ing the most recent packet from the history will
always result in the correct packet being chosen.
Once this is returned by all vehicles that have
received the requested packet, the requesting
vehicle can then verify whether the information
in the two packets is in agreement. This in-
volves computing the distance from the sender,
d1 and d2 via received signal strength, assum-
ing standard components using FSPLInverse.
Then taking d1 and d2 and received angles θ1

and θ2 the following is true:

xoriginal = d1 ∗ cos(θ1)

yoriginal = d1 ∗ sin(θ1)

xresponse = d2 ∗ cos(θ2)

and

yresponse = d2 ∗ sin(θ2)

forming the coordinates the received packet
was believed to have been sent from by the two
different vehicles. These are simply compared
to see if the vehicles agree to within some ε to
return a Boolean result as below:

result = |xoriginal− xresponse| ≤ ε && |yoriginal− yresponse| ≤ ε

The requesting vehicle then uses this result to
add to the trust rating of the requested packet.
If true, and the responder is trusted, the trust
rating in the packet is increased by the weight
given to consultation wconsultation multiplied by
the trust in the responder, tresponder, as below:

tpacket+ = wconsultation · tresponder

To avoid a feedback loop, requests are only
made about the packets that are original data
packets, not control packets. Control packets
are packets such as packet requests and packet
replies.

This consultation occurs after the vehicle has
made a decision in regards to the truth of the
packet, i.e. the packet has either been passed
to the driving logic or rejected. This is so not
to delay the vehicles’ driving and potentially
waiting for a packet that may never arrive. Thus
the consultation increasing or decreasing the
rating of the packet will only affect enquiries
about the packet, requests for the reputation of
the sender and the overall trust put in a vehicle.

III. Results

In order to test the trust model, various attacks
against the information in the network were im-
plemented; these are termed malicious strategies.
Each strategy affects how a malicious vehicle
will attack the information in the network. Mali-
ciousLarge, for example, misinforms the receiver
about their position by 10 metres in a random
direction.

9

i. Experiment 1

The experiment will takes place on a simple
straight line two lane road 360 metres long,
traffic is able to enter ends of the road and
travels in the opposite direction to the other
lane.

Experiment Setup
In this experiment the MaliciousLarge strategy
is tested. Under this strategy the receiver
is misinformed of the malicious vehicle’s
position by 10 metres in a random direction.
The chance of creating a malicious vehicle
instead of a normal vehicle is 20%, giving a
non-malicious to malicious vehicle ratio of 4:1.
In order to compare how effective the trust
model is the number of malicious packets,
number of malicious packets caught, number
of non-malicious misclassified packets, and
total number of packets is recorded in the
reports. The percentages of malicious packets
caught to those sent can then be compared
across experiments, as can the percentage
of misclassified non-malicious packets. The
results from the described experiment are
presented below.

Experimental Results
Figure 1 presents four samples of the results of
the experiment beginning at 5 seconds into the
simulation, then 50 seconds, 100 seconds, 150
seconds and 195 seconds.

These results show that the given tests are
able to detect the MaliciousLarge strategy with a
good degree of accuracy, ranging from 60% to
77.3%, although the initial sample at 5 seconds
into the simulation has a small sample size. In
addition non-malicious packets are misclassi-
fied at a low rate, ranging from 0% at 5 seconds
into the simulation to 1.12% at 195 seconds into
the simulation. Further tuning of the CosineS-
imilarity test parameters may produce better
malicious packet detection results. The raw re-
sults are given in Figure 1 and the percentages
for these results are given in Figure 2.

Figure 1: Experiment 1: Graph of packet classification
results

Figure 2: Experiment 1: Graph of packet classification
percentages

ii. Experiment 2

In this experiment the effect of varying how
large the misinformation is in the Malicious-
Large strategy on the detection rate of the
malicious packets is examined. To do this,
the same topology file as experiment 1 is
invoked, but the size of the misinformation in
the MaliciousLarge strategy is changed.

Experiment Setup
For this experiment, the value of how large
the misinformation is by the MaliciousLarge
strategy will be adjusted. The proposed

10

values of the size of the misinformation is
1 (metre), 3, 5, 10 (default value), 20 and 40.
The varying values will then be compared on
their size against their detection rate, the ratio
of captured malicious packets to transmitted
malicious packets. For this value the last report
at 195 seconds into the simulation is taken.

Experimental Results
Below is a table listing the varying misinfor-
mation values and how they had performed
after 195 seconds of simulation in the following
categories: malicious packets sent, malicious
packets caught and the percentage of these val-
ues.

These results show that varying the param-
eters of the malicious attack against the net-
work does affect the detection rate, however the
change has to be quite large for the change in
detection rate to be noticeable. Varying the size
of the misinformation in the malicious packets
from 1-20 metres does not significantly vary
malicious packet detection rates. However, the
variation from 20 to 40 metres gives a malicious
packet detection rate increase of approximately
8.5%. This indicates that the parameters in the
packet tests require additional tuning, increas-
ing the CosineSimilarity threshold would make
this test more sensitive to position changes for
example. However, this would then also likely
increase the non-malicious packet misclassifica-
tion rate, sudden changes in acceleration such
as at traffic lights or through corners would
then be more likely to trigger this test. Alterna-
tively, this may indicate that the weighting of
the packet test results may need to be changed,
as the CosineSimilarity test is not sensitive to
even large changes until a certain threshold, its
results may be considered less trustworthy.

These results are given in below graphical
form in Figure 3.

Figure 3: Experiment 2: Graph of malicious packets
caught percentage varying misinformation size

IV. Discussion

i. Summary

The original motivation for implemented trust
model was to determine whether it would be
useful for determining trustworthy vehicles in
a VANET based on the information they have
sent. This is important because autonomous
vehicles still require improvements in order to
achieve the highest levels of automation as de-
fined by SAE International [17]. To achieve
level 5, the highest of the six levels of automa-
tion defined by SAE International, autonomous
vehicles must effectively be able to plan their
routes and interact with the environment, in-
cluding infrastructure and other vehicles, in
order to operate. Generally, VANETs include
RSUs in order to facilitate network features,
such as forwarding of packets, that may not be
guaranteed by a VANET. However due to the
predicted difficulties of implementing RSUs we
decided not to use RSU in our trust model, this
makes the implementation of the trust model
more difficult as there is no implicitly trust-
worthy sources of information, all information
received must be tested. The problem is then to
determining trustworthy vehicles in a VANET
without RSUs based on the information they
have sent.

11

In summary, based on previous research and
ideas, a trust model is implemented to deter-
mine which vehicles and what information in
the network is trustworthy. Based on previous
work that suggested RSUs would be infeasible
in the near future, and potentially never in re-
mote regions, the system has been designed
to work without RSUs. This makes establish-
ing trust more difficult as there is no implicitly
trustworthy nodes in the network, compared
with traditional Internet infrastructure which
has the implicitly trustworthy certificate author-
ities.

In order to determine whether the informa-
tion transmitted wirelessly by a vehicle is trust-
worthy, each packet is subject to four test predi-
cates. The four tests, CosineSimilarity, OnRoad,
SignalDistanceVerification and GeometryVerifica-
tion all attempt to tie the claimed information
from a vehicle to some observed (and implicitly
correct) physical data, such as signal strength
for SignalDistanceVerification. These tests are
then combined to give a rating for each indi-
vidual packet which is passed into the vehicles’
configurable sized history. Prior to a vehicle
filling its history the trust in another vehicle
is simply determined by the number of mali-
cious and non-malicious packets it has received
from the sender, no weighting is applied. How-
ever, once the packet history is full, the trust
in a sender is a weighted sum of the packets
contained in the history, allowing a temporal
factor to be added to the trust in other vehi-
cles. Once a packet has been received, a vehicle
also consults with nearby vehicles to see if they
have received the packet, and if so, to return a
copy of the information contained in the packet.
If the two vehicles agree on the information
contained in the packet, and it is physically
consistent, the trust in the packet is increased.
In addition, when a vehicle receives a packet
from a previously unknown sender it may re-
quest the trust in the sender from other nearby
vehicles. This is then weighted by the trust in
the respondent. This technique helps to facili-
tate the bootstrapping of trust values when a

vehicle initially joins a VANET.
In order to test the trust model described

in this paper, it was implemented as a series
of dynamically loadable modules for the au-
toauto vehicle and network simulator. This was
chosen due to its open source nature and be-
ing a combined vehicle and network simula-
tor. In order to mimic potential attacks against
the network, a group of malicious strategies
were implemented, these effectively detailing
how the information in the network is to be
attacked. The strategies MaliciousLarge and Ma-
liciousSmall deliberately misinform about the
position of their owning vehicle in large and
small quantities, respectively. MaliciousPower
transmits information at a different provided
strength than to what is assumed to be stan-
dard. MaliciousShadow responds to any packets
by claiming to be a vehicle length in front of
the sender. These strategies were then tested in
a series of experiments to determine the effec-
tiveness of the packet tests and trust model.

Results from a number of other experiments,
not reported here, indicate that trust models
are well suited for use in VANETs. The im-
plemented tests are effective in detecting the
implemented malicious attacks and also have a
low degree of misclassification of non-malicious
packets. However, the detection rate of mali-
cious packets is also related to the parameters
employed in the simulation, varying these pa-
rameters dynamically may increase detection
rate, this is discussed in the Further Work sec-
tion. Ideally, the misclassification rate of non-
malicious packets should be zero, adjusting of
test parameters may alleviate this problem.

In addition the results from experiment 2
indicate that the specific parameters the mali-
cious vehicles attack the network with affect
the detection rate. Comparison of the results
of the packet tests to determine how large the
misinformation used by detected packets are
could be used to inform dynamic variation of
the packet test parameters, this is discussed in
the Further Work section.

A final experiment has shown that mali-

12

cious vehicles attacking the network increases
the overhead of the network, specifically the
amount of data that must be processed by each
vehicle. When running a simulation on a desk-
top computer execution time of the tests is
unlikely to be problematic for the small per-
centage of packets that are actually malicious.
However, when running on the much weaker
hardware likely to be present in vehicles, any
extra tests that have to be used because extra
malicious packets were received could delay
computation on safety critical data such as sen-
sors.

Trust models are effective in the context of
VANETs, their decentralised nature allows each
vehicle to form their own view on how trust-
worthy other vehicles are. In addition, trust
models also deal well with the ad-hoc nature
of the network, they simply test whatever in-
formation they receive; they do not rely on any
strict timings for sent or received messages, it is
never assumed the packet may reach its target
or anyone at all. However, each vehicle does
need to be equipped with the TrustModule it-
self in addition to other devices we assumed
the vehicles were equipped with such as a GPS
and a device to detect angle-of-arrival of in-
formation. In addition to this, it is assumed
that each vehicle is using a wireless device with
the same characteristics, such as signal strength
and signal frequency. Standardisation of hard-
ware, especially of hardware produced by pri-
vate companies may be difficult unless required
by law. We have shown that the given packet
tests are effective at using data from physical
sensors in addition to the information received
from other vehicles to determine whether the
information is consistent. These tests may also
have to be added or removed from the Trust-
Module as new attacks or sources of error are
found or eliminated, the mechanisms for how
the software ran by the TrustModule is to be
updated is unclear.

ii. Further Work

The implemented model offers lots of oppor-
tunities for work to be extended. In particular
the parameters, the threshold values, history
size and weightings applied to tests and packet
history could conform to an adaptive strategy.
Instead of being set at the beginning of a sim-
ulation, or when a vehicle starts a journey, the
values could adjust based on responses other
vehicles.

Test weightings could also be adjusted based
on the environment, signal strength based
methods may be less useful in an urban envi-
ronment which will cause refraction, diffraction
or reflection. Altering packet and vehicle trust
thresholds may be useful when there is a larger
than expected untrustworthy to trustworthy ve-
hicle ratio and trusting another vehicle must
be subject to more stringent conditions. In ad-
dition, the vehicles could also adapt to traffic
conditions, e.g. traffic jams versus empty roads,
or physical qualities of the road network such
as the road layouts. These values could be ad-
justed based on the comparison of the ratio of
trustworthy to untrustworthy vehicles, if this
varies from historical or expected values the
test weights could be changed. With dynamic
weightings it would be expected that malicious
packets would be more likely to be identified
and non-malicious packets less likely to be mis-
classified. Alternatively AI methods could be
used to search for optimal configurations of
parameters in advance.

In addition further trust tests and malicious
strategies could be developed. Currently, there
is only basic collaboration between vehicles for
both trust testing and malicious attacks, both of
these could be improved with greater collabora-
tion. Collaborative malicious attacks could use
groups of malicious vehicles to collaboratively
attack or misinform the group of non-malicious
vehicles nearby. This data could then be used
to tailor attacks so the false information seems
to be physically consistent, e.g. with false co-
ordinates and a known distance to target, the

13

power of transmission could be set to produce
internally consistent received signal strengths.
Non-malicious vehicles could themselves form
trusted groups but this does not stop the issue
of a potential well behaved “spy” informing
malicious vehicles about the non-malicious ve-
hicles. Further trust tests would then need to
be developed to counter the increasing sophis-
tication of attacks. The conditions to execute
this type of attack and how they might reason-
ably be countered has been an extensive field
of study in MANETs, so similar principles may
be applicable in a VANET context.

Currently, the network simulation uses the
free space path loss model which, by definition,
expects free space in between the the sender
and receiver. Therefore, the given results are the
“best case” scenario for, in reality it is expected
that both the network tests and the network
itself would perform worse due to reflection,
refraction and diffraction and other physical
phenomena of signals. Further work could in-
troduce this to the network simulation and then
observe the (likely negative) effect this would
have on the performance of the VANET. Fur-
ther tests that compensate for these challenges
would then need to be implemented.

V. Acknowledgments

We are grateful to Trent Reid for a number
of early discussions on simulator design and
usability, which guided the implementation of
our own autoauto simulator.

References

[1] ABC News. Uber launches driver-
less car service in landmark US trial.
www.abc.net.au/news/2016-09-14/uber-
launches-groundbreaking-driverless-
car-service-in-us/7845820, September
2016.

[2] Abdul-Rahman, A., and Hailes, S. Sup-
porting trust in virtual communities. In

Proceedings of the 33rd Annual Hawaii Inter-
national Conference on System Sciences (Jan
2000), pp. 1–9 vol.1.

[3] Blum, J. J., Eskandarian, A., and Hoff-
man, L. J. Challenges of intervehicle ad
hoc networks. IEEE Transactions on Intelli-
gent Transportation Systems 5, 4 (Dec 2004),
347–351.

[4] Catapult. Shipping and Autonomous Ve-
hicles: The Future of Logistics Technology.
www.gocatapult.com/blog/shipping-
and-autonomous-vehicles-the-future-
of-logistics-technology/, November
2016.

[5] Chen, Y. M., and Wei, Y. C. A beacon-
based trust management system for en-
hancing user centric location privacy in
vanets. Journal of Communications and Net-
works 15, 2 (April 2013), 153–163.

[6] Gazdar, T., Benslimane, A., Rachedi, A.,
and Belghith, A. A trust-based architec-
ture for managing certificates in vehicu-
lar ad hoc networks. In 2012 International
Conference on Communications and Informa-
tion Technology (ICCIT) (June 2012), pp. 180–
185.

[7] Haratsis, B. Economics Impacts
of Automated Vehicles on Jobs
and Investment. advi.org.au/wp-
content/uploads/2016/09/ADVI-
Economic-Position-Paper-30-09-2016-
3.pdf, September 2016.

[8] Kim, D., Velasco, Y., Wang, W., Uma, R.,
Hussain, R., and Lee, S. A new compre-
hensive rsu installation strategy for cost-
efficient vanet deployment. IEEE Transac-
tions on Vehicular Technology PP, 99 (2016),
1–1.

[9] Krok, A. Tesla is now testing autonomous
vehicles on public California roads.

14

https://www.cnet.com/roadshow/news/tesla-
is-now-testing-autonomous-vehicles-on-
public-california-roads/, February 2017.

[10] Lèbre, M.-A., Mouël, F. L., Ménard, E.,
Dillschneider, J., and Denis, R. Vanet
applications: Hot use cases. arXiv preprint
arXiv:1407.4088 (2014).

[11] Lee, E.-K., Gerla, M., Pau, G., Lee, U.,
and Lim, J.-H. Internet of vehicles: From
intelligent grid to autonomous cars and
vehicular fogs. International Journal of
Distributed Sensor Networks 12, 9 (2016),
1550147716665500.

[12] Mangharam, R., Weller, D., Rajkumar,
R., Mudalige, P., and Bai, F. Groovenet:
A hybrid simulator for vehicle-to-vehicle
networks. In 2006 3rd Annual International
Conference on Mobile and Ubiquitous Systems
- Workshops (July 2006), pp. 1–8.

[13] McDonald, C. autoauto Home Page.
staffhome.ecm.uwa.edu.au/00014979/autoauto/,
2017. Accessed: 29/05/2017.

[14] Mikolic-Torreira, I., Snyder, D., Price,
M., Shlapak, D., Beaghley, S., Bishop, M.,
Harting, S., Oberholtzer, J., Pettyjohn,
S., Weinbaum, C., and Westerman, E. Ex-
ploring cyber security policy options in
australia, August 2017.

[15] mLab. GrooveNet.
mlab.seas.upenn.edu/projectsites/groovenet/.

[16] Piorkowski, M., Raya, M., Lugo, A., Pa-
padimitratos, P., Grossglauser, M., and

Hubaux, J.-P. TraNS: Realistic Joint Traf-
fic and Network Simulator for VANETs.
ACM SIGMOBILE Mobile Computing and
Communications Review 12, 1 (2008), 31–33.

[17] SAE International. U.S. Depart-
ment of Transportation’s New Pol-
icy on Automated Vehicles Adopts
SAE International’s Levels of Au-
tomation for Defining Driving Au-
tomation in On-Road Motor Vehicles.

https://trustedcomputinggroup.org/tpm-
main-specification/. Accessed: 2017-04-27.

[18] Shaikh, R. A., and Alzahrani, A. S.
Intrusion-aware trust model for vehicular
ad hoc networks. Security and Communica-
tion Networks 7, 11 (2014), 1652–1669.

[19] Stewart, J. Google’s Finally Offer-
ing Rides in Its Self-Driving Minivans.
https://www.wired.com/2017/04/googles-
finally-offering-rides-self-driving-
minivans/, April 2017.

[20] Sunday, D. Inclusion of a Point in
a Polygon. geomalgorithms.com/a03-
_inclusion.html, December 2015.

[21] Tomandl, A., Herrmann, D., Fuchs, K. P.,
Federrath, H., and Scheuer, F. Vanet-
sim: An open source simulator for security
and privacy concepts in vanets. In 2014
International Conference on High Performance
Computing Simulation (HPCS) (July 2014),
pp. 543–550.

15

