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REPORT SUMMARY  
THE PURPOSE OF THIS REPORT  

Is to present new expressions for delay, number of stops and queue length at traffic signals operating in a fixed-
time mode so as to provide simple working models to predict traffic operating characteristics in both 
undersaturated (below capacity) and temporarily oversaturated (above capacity) conditions.   

THIS REPORT SHOULD INTEREST  
traffic engineers and researchers concerned with the design and operation of traffic signals.   

THE MAJOR CONCLUSION OF THE REPORT ARE 
(a) the limitations of the existing formulae for delay, number of stops and queue length based on the steady-

state (equilibrium) flow assumptions for undersaturated signals and the deterministic formulae for 
oversaturated signals can be overcome by using a co ordinate transformation technique; the use of the 
overflow queue concept provides a good basis for this purpose; 

(b) the new expressions predict finite values of delay, queue length and number of stops for flows near 
capacity with a smooth transition from below-capacity to above-capacity conditions; this is the contrast 
with the existing steady-stare expressions for undersaturated signals which predict infinite values for 
flows just below capacity and the deterministic expressions for oversaturated signals which predict zero 
(or very small) values for flows just above capacity; the difference is important since most signals 
operate under near-capacity conditions during peak periods of traffic. 

AS A CONSEQUENCE OF THE WORK REPORTED, THE FOLLOWING ACTION IS RECOMMENDED 
(a) incorporate the new expressions (simplified forms) given in this paper in the relevant section of the 

revised Signalised Intersection Capacity and Timing Guide (to replace ARR 79); 
(b) extend to the method described to develop more comprehensive formulae to predict traffic operating 

characteristics in consecutive time periods; 
(c) study overflow queues at co-ordinated and vehicle actuated traffic signals; and 
(d) study the optimum signal timings derived using the new expressions in comparison with the timings 

derived using the traditional (Webster, Miller,etc.) expressions.  

RELATED ARRB RESEARCH 

P312  Effects of Traffic Patterns on Fuel Consumptions and Emission 
P331  Analysis of SCATS 
P347  Signalised Intersection Survey Method 
FS1068  Australian Traffic Signalling 
FS1094  Signalised Intersection Capacity and Timing Guide Revision  

INFORMATION RETRIEVAL 

AKÇELIK, R. (1980): TIME-DEPENDENT EXPRESSIONS FOR DELAY, STOP RATE AND QUEUE LENGTH 
AT TRAFFIC SIGNALS.  Australian Road Research Board.  Internal Report AIR 367-1.  

KEYWORDS : Traffic signal / traffic control / junction / design (overall design) / traffic flow/ capacity (road, 
footway) / congestion (traffic) / delay / queue / stops* / fixed time (signals) / linked signals / mathematical model 

ABSTRACT :  This paper presents new approximate expressions for predicting delay, stop rate and queue 
length at traffic signals operating in a fixed-time mode for flow conditions which last for a finite period of time. 
The emphasis is on the use of the overflow queue concept which facilitates a better understanding of the 
transition from undersaturated conditions to oversaturated conditions, and allows for the derivation of simpler 
expressions which apply to both conditions. Firstly, deterministic expressions for delay, stop rate and queue 
length are derived for oversaturated conditions. Steady-state expressions for undersaturated signals are 
summarised. Then the limitations of steady-state and deterministic expressions for near-capacity conditions are 
discussed. Transition functions which overcome these limitations are given. These functions have been derived 
using the Whiting / Kimber-Hollis co-ordinate transformation technique. Each one of the new expressions for 
delay, stop rate and queue length is presented in a simple form consisting of a uniform component and an 
overflow component. The latter is an explicit function of the average overflow queue. Transition functions for the 
average overflow queues at isolated as well as co-ordinated signals are presented.  
* Non-IRRD keywords 
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1. INTRODUCTION 

The normal analysis of congestion is as a steady-state phenomenon potentially in long-run equilibrium.  
...  For an intersection there might be a flow/delay relation which will relate an average equilibrium delay 
to a flow which will be expected to continue for some time without change. (This type of relation is) often 
shown to rise to infinite time as the rate of flow approaches some finite value.  Clearly so long as the 
steady state assumption is retained, that the same rate of flow might reasonably be supposed to 
continue forever, this is just what would happen, but as flow approaches “capacity” this postulate 
becomes increasingly implausible.  In such a situation the standing queue increases steadily in length 
and the time required to reach the steady state becomes longer, until on the extreme, there will be an 
infinite queue and it will take an infinite time to reach the steady state if flow is actually equal to or greater 
than “capacity”.  In fact (congestion) is always a peaked phenomenon lasting only for a limited length of 
time.  Failure to take account of the temporary nature of (congestion) can lead to analytical problems.   

(Neuburger 1971) 

 

 

Various expressions for predicting the queue length, delay and stops at isolated, undersaturated 
signals were discussed in a paper by the author (Akçelik 1980). It was shown that, as in the case of 
delay and queue length, an expression to predict the stop rate (average number of stops per vehicle) 
could be derived using the overflow queue concept. Miller’s (1968) approximate expression for the 
average overflow queue, i.e. the average number of vehicles left in the queue at the end of the green 
period, at isolated undersaturated signals, was recommended for use in the stop rate formula because 
of its explicit and direct formulation. It was also shown that an equivalent average overflow queue 
value could be calculated using the queue length prediction method given by Webster (1958). The 
importance of the average overflow queue parameter in various expressions for delay at 
undersaturated signals, and other discussions on the overflow queue concept can be found in Haight 
(1959), Miller (1964), Allsop (1972), McNeil and Weiss (1974), Ohno (1978) and Sosin (1980). 

It appears that there has been an over-emphasis on some detailed aspects of the theoretical 
formulations of delay at undersaturated signals without due consideration to their practical relevance. 
As aptly stated by Allsop (1972):  

‘The appreciation of the relevance of these theoretical probabilistic arrival models was valuable in 
enabling probability theory to be applied to the analysis of the traffic signal queue. The mathematical 
fascination of such analyses has, however, caused them to be pursued to a level of intricacy far greater 
than is likely to find practical application. The behaviour of real traffic does not correspond closely 
enough to any of these very specific mathematical models to warrant, for practical purposes, the very 
refined solutions that have been obtained.  

A major limitation of the expressions given in the papers referred to above is that they are valid for 
steady-state (equilibrium) conditions only. This means that the demand flow is, on average, less that 
the capacity available, i.e. undersaturated conditions apply. Following Miller’s (1968) suggestion about 
the accuracy of his average overflow queue formula, the formulae given in Akçelik (1980) were 
considered to give good approximation for degrees of saturation (flow / capacity ratios) up to 0.95. The 
steady-state expressions are independent of the length of time period they are applied to.  However, in 
oversaturated conditions, which last for a finite period of time, it becomes important that the analyses 
are based on the use of time-dependent flow and timing parameters.   

There is now a growing amount of literature on temporarily oversaturated signals (e.g. Rahman 1973, 
Gazis 1974, Catling 1977, Yagar 1977, Branston 1978, Pignataro, et al. 1978, Mayne 1979, 
Michalopoulos 1979, Roberston 1979, Kimber and Hollis 1979, Luk and Sims 1979, Michalopoulos 
and Meyer 1980). Formulae given in some of these publications for predicting delays and queue 
lengths appear to be mathematically involved, especially those for consecutive time periods (e.g. see 
Mayne 1979). A simpler formulation for delay at isolated signals is adopted by Robertson (1979). This 
is based on a co-ordinate transformation (or, transition curve) technique which was conceived by 
Whiting for use in TRANSYT program and developed in detail for a variety of queuing situations by 
Kimber and Hollis (1979).  
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The purpose of this paper is to present new expressions for delay, stop rate and queue length which 
have been derived using the co-ordinate transformation technique. The emphasis in the new 
expressions is on the use of the overflow queue concept.  This facilitates a better understanding of the 
transition from undersaturated (steady-state) conditions to (temporarily) oversaturated conditions, and 
allows for the derivation of simpler expressions which apply to both conditions.  

The expressions given in this paper are intended for practical use in a way similar to the use of the 
traditional formulae by Webster (1958) and Miller (1968) which were limited to undersaturated cases. 
For this reason, the formulae given in this paper are based on the consideration of a single time period 
with zero initial queue.  

A major contribution of this paper is considered to be presenting expressions to predict the stop rate at 
traffic signals.  The importance of stops as a measure of performance has been discussed elsewhere 
(Akçelik 1980, 1981a). 

The expressions for delay, stop rate and queue length are derived below for oversaturated conditions 
using a deterministic approach first. Steady-state expressions for undersaturated signals are 
summarised. Then the limitations of steady-state and deterministic expressions for near capacity 
conditions are considered and the co-ordinate transformation technique is utilised to obtain transition 
functions which are of use in both below and above capacity conditions. Simplified forms of these 
functions are presented for practical use. These expressions have been used in the new Australian 
Guide for Traffic signal capacity and Timing Analysis (Akçelik 1981b). 

2. DETERMINISTIC EXPRESSIONS FOR OVERSATURATED 
SIGNALS  

Methods to derived deterministic expressions for delay and queue length at oversaturated signals,  i.e. 
when the average arrival flow rate exceeds capacity, are given in earlier publications by May (1965), 
May and Keller (1976), Neuburger (1971) and Gazis (1974). The basic model presented below 
assumes a constant arrival (demand) flow rate, q, which persists during a time interval of length, t. It 
also assumes, in the deterministic sense, that the queue length at the start of this time interval is zero. 
The capacity, Q = s g / c (s = saturation flow, g / c = effective green time / cycle time ratio), which is 
constant as determined by the fixed-time operation of signals, is exceeded by the arrival flow rate, q, 
by an amount equal to z Q = q - Q (where z = x - 1, x = q / Q is the degree of saturation, i.e. flow / 
capacity ratio). Thus, the oversaturation queue is assumed to increase linearly from zero to a 
maximum value of (z Q t) at the end of the time interval, t. Provided the arrival flow rate in the 
subsequent interval is less than the capacity (q2 < Q), the oversaturated queue will be cleared at time 
t2 = (z / z2) t after the end of interval t, where z2 = 1 - x2 > 0 and x2 = q2 / Q < 1.0.  

In the derivations below, q2 = 0, and hence t2 = z t = (x - 1) t, is used so as to exclude the delays and 
stops to vehicles which arrive during the subsequent period.  

The basic model is illustrated in Figure 1. The cumulative numbers of arrivals and departures are 
shown in the top part of Figure 1 for the following example:  

cycle time, c = 120 s, effective green time, g = 30 s,  
arrival flow, q = 360 veh/h, arrivals per cycle, q c = 12 veh, saturation flow,  
s = 1200 veh/h, departures per cycle, s g = 10 veh, capacity,  
Q =300 veh/h, degree of saturation, x = 1.2, z = x - 1 = 0.2, and  
excess flow, z Q = q - Q = 60 veh/h (q c - sg = 2 veh per cycle)    

A time interval of t = 10 min (5 cycles) is considered.  The queue at the end of interval t is z Q t = 
10 veh, and the time to clear this queue is t2 = z t = 0.2 x 10 = 2 min (1 cycle).  

The following can be seen in the top part of Figure 1: 

(a) The area between the cumulative arrival curve (linear with slope q) and departure curve 
(sawtooth with zero slope during the red period and slope s during the green period) represents 
the total delay. The horizontal distance between the two curves represents the delay to an 
individual vehicle (e.g. AA' = 116 s for vehicle 23).  

(b) The vertical distance between the two curves represents the queue length (number of vehicles in 
queue) at a given time (e.g. BB'). The overflow queue is the queue at the end of a signal cycle 
(e.g. CC’ = 8 veh at the end of the fourth cycle).  
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Figure 1 - Deterministic model of oversaturated signals (an example) 
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The idealised time-distance trajectories of individual vehicles are shown in the bottom part of Figure 1.  
The assumption of the uniform arrivals (constant headways, 1 / q) is used as in the case of deriving 
the uniform component of delay, stops and queue length at undersaturated signals (Akçelik 1980).  
The relationship between the overflow queue and multiple stops, i.e. more than one stop per vehicle, 
can be observed from Figure 1.  For example, an overflow queue of 2 vehicles at the end of the first 
cycle corresponds to vehicles 11 and 12 which make two stops before clearing the intersection. 
Similarly, an overflow queue of 4 vehicles at the end of the second cycle corresponds to vehicles 21 to 
24 which are stopped twice, and so on (initial stops by vehicles 13 and 25, 26 in the first two cycles 
are neglected as explained below).  

General expressions for the overflow queue, delay and stops in an oversaturated cycle are given 
below using the parameters shown in Figure 2.  

Overflow queue at the end of the ith cycle: 

ni = ni-1 + q c + s g (1) 

Total delay during the ith cycle: 

Di = ni-1 c + 0.5 (q c2 + s g2) (2) 

Total number of stops during the ith cycle: 

Hi = ni-1 + q c (3) 

Theoretically, the number of stops per cycle is (ni-1 + q r) / (1 - y), where y = q / s (flow ratio).  
Equation (3) gives a smaller number of stops because it neglects the stops made by vehicles which 
arrive at the back of a moving queue from the previous cycle, i.e. only the stops by (q c) vehicles 
arriving in a cycle are accounted for.  For example, the initial stops by vehicle 13 in the second cycle, 
vehicles 25 and 26 in the third cycle, vehicles 37 to 39 in the fourth cycle, etc., are neglected (shown 
by dotted lines in the bottom part of Figure 1).  This assumption was made so as to compensate for 
drivers who may adjust their speed to avoid a stop when faced with a red signal and moving queue 
ahead. 

 

 

 

Figure 2 - An oversaturated signal cycle 
  

Q r 
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The following deterministic expressions (subscript d is used to indicate this) for the average overflow 
queue, total delay and stop rate as experienced by (q t) vehicles during the period t + t2 = x t  
(in x t / c cycles) are derived from Equations (1) to (3).  

Average overflow queue is given by: 

Nd = 0.5 (q - Q) t = 0.5 z Q t (4) 

where  
Nd = average overflow queue in vehicles total number of vehicles queued in all lanes), 
q = arrival flow which persists during the time interval t (q in vehicles per hour, t in hours), and  
Q = capacity (in vehicles per hour).  

Total delay is given by: 

Dd = 0.5 q r + Nd x (5) 

where 
Dd = total delay (in vehicle-hours per hour, or simply ‘vehicles’), and 
q r = total number of vehicles which arrive during the red period (q = flow in vehicles per second, r = 

effective red time in seconds)  

The average delay per vehicle can be calculated from d = D / q where q is in vehicles per second. 

Stop rate is given by:  

hd = 1 + Nd / (s g) (6) 

where  
hd = stop rate (average number of stops per vehicle), and 
s g = total number of departures (capacity) per cycle (s = saturation flow in vehicles per second,  

g = effective green time in seconds, s g in vehicles).  

The total number of stops can be calculated from H = h q, where H is in the same units as q. 

Also of interest is the average queue length at the start of the green period. This is given by:  

Ndr = Q r + Nd (7) 

where Q, r, Nd are as in the above expressions. The maximum (stationary) queue length occurs in the 
last cycle during the time interval t (DD' in Figure 1), and is given by Nc = 2 Nd + (s - q) g.   

It is seen that Equations (5), (6) and (7) consist of two components: 

(a) A uniform component which corresponds to the triangular area OAB in Figure 2 (which is seen to 
be a fixed amount in each cycle in Figure 1). This is the at-capacity value of the statistic 
concerned, and can be obtained from the uniform component of the expression for under-
saturated signals (Equations 9 to 11 given below) by putting x = 1 (u = y, or q = Q). 

(b) A deterministic overflow component which corresponds to the area OBCD in Figure 2, and is 
expressed as a function of the average overflow queue given by Equation (4). It can be shown 
that the overflow components of average delay (do = No x / q) and stop rate (ho = No / (s g)) are 
related as (ho = do / c) where c is the cycle time.  

It should be noted that z > 0 and x > 1 in Equations (4) to (7). It is also important to note that Nd, and 
hence the overflow component of each expression, is a linear function of the time interval, t.  

The following values are calculated from above expressions for the example shown in Figure 1  
(using t = 1 / 6 h):  

average overflow queue, Nd = 5.0 veh,  
total delay, Dd = 10.5 veh-h/h,  
average delay, dd = 105.0 sec, 
stop rate, hd = 1.5 stops/veh 
total number of stops, Hd = 540 stops per hour,  
average queue at the start of green, Ndr = 12.5 veh, and  
maximum queue, Nc = 17.0 veh.   
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3. STEADY-STATE EXPRESSIONS FOR UNDERSATURATED 

SIGNALS 
It was emphasised in an earlier publication (Akçelik 1980) that the expressions for delay, stop rate and 
queue length at undersaturated signals (i.e. when the average arrival flow rate is below capacity) are 
interrelated, and that each could be considered to have a uniform component and a random 
component.  The random component was expressed as a function of average overflow queue.  

At undersaturated signals the overflow queues are due to random variations in arrival flow rates which 
result in some cycles being oversaturated.  However, because the arrival flow rate is, on average, 
below capacity, these queues will be discharged in subsequent cycles.  The average overflow queue 
parameter represents the steady-state assumption which is the basis of the delay, stop rate and 
queue length expressions given in Akçelik (1980). These are summarised below (subscript s is used 
to denote steady-state).  

Miller’s (1968) formula for predicting the average overflow queue at undersaturated fixed-time signals 
is:  

Ns = 0.5 {exp [-1.33 sqrt (s g) (1 - x) / x]} / (1 - x) (8) 

It is interesting to note that the numerical values of the average overflow queue given by 
Wormleighton (1965) are very close to those given by Equation (8).   

The Miller (1968) formula for delay is based on an explicit use of the average overflow queue 
parameter, Ns, given by Equation (8) 

Ds = 0.5 q c (1 - u)2 / (1 - y) + [(1 - u) / (1 - y)] Ns  (9) 

where 
u = green time ratio (effective green time /cycle time, g/c), and 
y = flow ratio (flow/saturated flow, q/s).  

Although a more complicated expression is possible as proposed by Ohno (1978), the accuracy of 
Equation (9) is considered to be sufficient for all practical purposes (see the Appendix ).  

The steady-state expression for stop rate is:  

hs = f [(1 - u) / (1 - y) +  Ns / (q c)] (10) 

where f is a correction factor to allow for partial stops (slowdowns). A general purpose value of f = 0.9 
was recommended in Akçelik (1980).  

The average queue length at the start of green period is given by:  

Nsr = q r +  Ns (11) 

where Ns is given by Equation (8), and (q r) is the number of vehicles in queue at the start of green 
period if uniform arrivals were assumed (q  = average arrival flow rate in vehicles per second,  
r = effective red time in seconds).  

4. TRANSITION FUNCTIONS 
Let us now consider how the two sets of expressions given above, namely, Equations (4) to (7) for 
oversaturated conditions, and Equations (8) to (11) for undersaturated conditions, can be related 
together. The limitations of these two sets of expressions in predicting traffic operating characteristics 
for near-capacity conditions is discussed below in terms of the average overflow queue expressions. 
The same considerations apply to the delay, stop rate and queue length expressions.  

As seen in Figure 3, which shows that average overflow queues predicted by Equations (4) and (8),  
for the numerical example given by Robertson (1979), a zero overflow queue value is predicted by the 
deterministic expression for a flow rate equal to the capacity whereas the steady-state ( probabilistic ) 
expression predicts infinite overflow queue values for flows just below capacity.  This indicates clearly 
that neither set of equations given in the preceding sections can be expected to give reasonable 
results for flows near capacity.  
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Figure 3 - Prediction of the average overflow queue by steady-state (x < 1) and  
deterministic (x > 1) expressions 

 

 

Figure 4 - Uniform, random and overflow components of a general performance function 
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The problem is solved using the co-ordinate transformation technique described in detail by Kimber 
and Hollis (1979). The technique was originally conceived by P.D. Whiting for deriving a ‘random 
delay’ expression for the TRANSYT computer program (Robertson and Gower 1977, Robertson 1979, 
Robertson, et al 1980). This technique transforms the steady-state function to a transition function 
which has the line representing the deterministic function as its asymptote. The result is not only to 
obtain realistic finite values of the performance function concerned for flows around capacity, but also 
to add a random component to the deterministic oversaturation function.  

Figure 4 shows a general performance function, P, which represents any one of the delay (total or 
average, D, d) , stops (rate or total number, h, H), or the average queue length (N) functions.  This can 
be expressed as:   

P = Pu + Po  (12) 

where 
Pu = uniform component, and 
Po = overflow component.  

The uniform component, Pu, corresponds to the first terms of Equations (5) to (7) for x > 1, and 
Equations (9) to (11) for x < 1. As shown in Figure 4, the uniform component is constant for x > 1, and 
is equal to the value at capacity, Pu (x = 1 ). 

The overflow component can be expressed as a function of the average overflow queue, Po = f(No), as 
in the second terms of Equations (5) to (7) and Equations (9) to (11).  The value of No can be 
predicted by a transition function as explained below.  As shown in Figure 4, for flows above capacity 
(x > 1), the overflow component, Po, is the sum of a deterministic component, Pd, and a random 
component, Pr. For flows below capacity (x < 1), the overflow component is equivalent to the random 
component, Po = Pr since Pd =0.  It is also seen in Figure 4 that the overflow component is zero below 
a certain degree of saturation (x < xo) since No ≅ 0 as predicted by Equation (8).   

4.1  AVERAGE OVERFLOW QUEUE  
In order to facilitate the derivation of a transition function for the average overflow queue, the following 
expression has been developed by the author for undersaturated signals, which is a simple 
approximation to Miller’s steady-state expression (Equation 8): 

Ns = 1.5 (x - xo) / (1 - x) for x > xo (13) 
     = 0 x ≤ xo 

where xo is a degree of saturation below which the average overflow queue is approximately zero, and 
is given by: 

xo = 0.67 + s g / 600  (13a) 

where (s g) is in vehicles.  

Two other steady-state expressions for the average overflow queue at undersaturated signals are of 
interest. McNeil’s (1968) upper-bound expression (for Poisson arrivals):  

Ns = 0.5 / (1 - x)  (14) 

and Miller’s (1963) approximate expression:  

Ns = (x - 0.5) / (1 - x) for x > 0.5 (15) 
     = 0 x ≤ 0.5 

This is also considered to be an upper-bound expression, it is simply 0.5 less than the value given by 
Equation (14) for x > 0.5.  
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Figure 5 - Average overflow queues predicted by various steady-state (x < 1) expressions 

 

 

The overflow queues for undersaturated conditions predicted by Equations (8), (13), (14), and (15) are 
shown in Figure 5.  It is important to note that: 

(a) Equation (14) predicts non-zero overflow queues for all degrees of saturation, whereas the other 
three expressions predict zero overflow queues for degrees of saturation below a certain value, 
and  

(b) Equations (14) and (15) are not dependent on the (s g) parameter which is an indicator of the 
relative importance of various movements at an intersection (high s g  values for major 
movements and low sg values for minor movements).  

It appears that these two effects combined may have some impact on signal timing optimisation when 
there are marked differences between major and minor movement characteristics.  

The transition function for average overflow queue which is obtained using the co-ordinate 
transformation technique to relate Equation (13) to Equation (4) is:  

No = 0.25 Q t [z + sqrt (z2 + 12 (x - xo) / (Q t))] for x > xo (16) 
     = 0 x ≤ xo 

where 
Q t = throughput, i.e. the maximum number of vehicles which can be discharged during the time 

interval, t (Q is the capacity in vehicles per hour, t in hours), 
z = x - 1 (x = q / Q, degree of saturation, q is the average arrival flow rate which persists during 

the time interval, t),  
xo = 0.67 + s g / 600 as in Equation (13).  
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It should be noted, for the correct use of Equation (16), that the parameter z has a negative value for 
flows below capacity (x < 1). 

It should also be noted that the derivation of Equation (16), as well as other transition functions given 
in this section, involve some minor simplifying assumptions.  

The transition function for average overflow queue based on Equation (14) is: 

No = 0.25 Q t [z + sqrt (z2 + 4 x / (Q t))]  (17) 

This expression is of interest because of its relevance to the delay function used in the TRANSYT 
computer program (Robertson and Gower 1977). As in Equation (14), this function predicts non-zero 
overflow queues for all degrees of saturation, and can be considered to be an upper-bound 
expression. 

The difference between the average overflow queue functions obtained from Equations (16) and (17) 
can be seen in Figure 6 which illustrates examples for s g = 10 and s g = 80 when Q t = 30 s g  
(e.g. for t = 1 h, c = 120 s). 

4.2  TOTAL DELAY 
To derive a transition function for total delay, let us replace random delay term of Equation (9) by the 
following approximate term:  

Dr = ((1 - u) / (1 - y)) Ns ≅ Ns x  (18) 

With this approximation, if No is predicted by the upper-bound expression, Equation (14), the random 
delay is:  

Dr = 0.5 x2 / (1 - x)  (19) 

This is the second term of Webster’s (1958) delay formula.  

Since Equation (18) is the same as second term of Equation (5), the transition function is also of the 
same form. Therefore, total delay can be expressed as: 

D = Du + Do  (20) 

where the uniform delay component is: 

Du = 0.5 q c (1 - u)2 / (1 - y) for x < 1 (20a) 
     = 0.5 q r x ≥ 1 

and the overflow component is:  

Do = No x  (20b) 

where No is given by Equation (16). 

If No given by Equation (17) is used, Do corresponds to the transition function given by Robertson 
(1979) which was obtained directly from Equation (19).  In this case, Equation (20) can be considered 
to be an upper-bound expression for total delay.  

It should be noted that the approximation introduced in Equation (18) is relevant to degrees of 
saturation, x, in the range between about 0.65 and 0.95 because No is zero below about 0.65 (or xo in 
Equation (16)) and the steady-state expressions are valid for x up to 0.95.  The effect of this 
approximation is considered to be negligible for most practical purposes (see the Appendix). 
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Figure 6 - Average overflow queues predicted by two transition functions 
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4.3  STOP RATE 
The following transition function has been derived for the overflow component of stop rate by relating 
the second terms of Equations ( 10 ) and ( 6 ): 

ho = 0.25 (Q t / (s g)) [z + sqrt (z2 + 12 (x - xo) / (q t))] for x > xo (21) 
    = 0 x ≤ xo 

Therefore, the stop rate function can be expressed as: 

h = f (hu + ho)  (22) 

where the uniform component is: 

hu = (1 - u) / (1 - y) for x < 1 (22a) 
     = 1.0 x ≥ 1 

the overflow component ho is given by Equation (21), and f is the correction factor for partial stops as 
in Equation (10). 

The overflow component of stops rate based on the use of No calculated from Equation (17), is the 
same as Equation (21) except that 12 (x - xo) under the square root must be replaced by (4 x).  If used 
in Equation (22), this could be considered to give an upper-bound expression for stop rate.  

4.4  AVERAGE QUEUE LENGTH AT THE START OF THE GREEN PERIOD 
The average number of vehicles in the queue at the start of the green period (at the end of red period) 
is given by:   

Nr = Nu + No  (23) 

where the uniform component is  

Nu = q r for x < 1 (24) 
     = Q r x ≥ 1 

and the overflow component, No is simply the average overflow queue given by Equation (16), or 
Equation (17).  

Equation (23) gives the maximum stationary stop-line queue in an average cycle.  The maximum 
queue in any cycle can be calculated roughly as twice as the value of N.  

The maximum back of the queue occurs sometime after the start of green as seen at the bottom part 
of Figure 1.  The average value of this queue can be estimated from 

Nm = (q r / (1 - y)) + No  (25) 

See Equation (15) in Akçelik (1980).   

Nm is the physical end of the queue as perceived by the drivers. While the back of the queue increases 
from Nr at the start of green period (Equation 23) to Nm at some time after the start of green period, the 
front of the queue will be moving forward. At the time when Nm is reached, all vehicles will be moving, 
some beyond the stop line, i.e. will have already cleared the intersection.  
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5. SIMPLIFIED EXPRESSIONS 
Equations (20) to (23) may appear to be a little cumbersome for use in practice. The condition of a 
fixed value of the uniform component for x > 1 in these expressions can be relaxed at the expense of 
obtaining slightly higher values of the performance function for oversaturated conditions. In the case of 
the stop rate expression a further simplification is introduced which compensates for this effect.  The 
following expressions are recommended for practical use:  

The total delay:  

D = 0.5 q c (1 - u)2 / (1 - y) + No x  (26) 

The stop rate:  

h = f ((1 - u) / (1 - y) + No / (q c ))  (27) 

The average (stop-line) queue at the start of the green period:  

Nr = q r + No  (28) 

It is seen that these expressions have the same form as the steady-state expressions for 
undersaturated conditions (Equations 9 to 11), except for the second term Equation (26) due to the 
approximation given by Equation (18). Of course, the difference is that the average overflow queue, 
No, which determines the overflow components of the above expressions, is to be calculated from the 
transition function given by Equation (16), or alternatively from Equation (17) for an upper-bound 
expression.  

Equation (27) provides a convenient method of estimating stop rate at signals since separate 
calculation of an overflow component, ho, from Equation (21) is avoided.  

Figures 7 to 9 illustrate the average delay (d = D / q), stop rate, h, and average queue at the start of 
the green period, Nr, obtained from Equations (20) to (23), with No calculated from Equation (16), as a 
function of the degree of saturation, x. These diagrams are for the data used in an example by 
Robertson (1979). The overflow components of each function (curve T) is shown  separately at the top 
part of each diagram together with the corresponding steady-state (curve S) and deterministic 
oversaturation (line D) functions. The stops shown in Figure 8 are uncorrected for partial stops, i.e. not 
multiplied by factor f.  

The values of delay, stop rate and queue length obtained from simplified expressions (Equations 26  
to 28) are shown in Figures 7 to 9 as dots in the bottom part of each diagram for the cases where 
there is a difference from those given by respective Equations (20) to (23).  
  



14 Akçelik, R.  

 
 

 

Figure 7 - Average delay as a function of the degree of saturation 
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Figure 8 - Stop rate as a function of the degree of saturation 
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Figure 9 - Average queue length at the start of green period as a function of the degree of saturation 
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6. CO-ORDINATED SIGNALS 
It is interesting to note that a transition function was first used for co-ordinated signals rather than 
isolated signals (Robertson and Gower 1977, Robertson et al. 1980).  The evidence given in 
Robertson (1969, App. 2) indicates that the effect of random variations in flow levels from cycle to 
cycle is smaller at co-ordinated signals that at isolated signals, probably because of the structured 
nature of arrival and departure patterns. In a way similar to the assumption made by Robertson  
(1969) for deriving a random delay term for the TRANSYT program, it may be assumed that the 
average overflow queue at undersaturated co-ordinated signals is half the average overflow queue at 
undersaturated isolated signals with the same x and (s g) values. Although research is needed to 
substantiate this, the assumption provides a reasonable working model in the meantime.  

The transition function for average overflow queue at co-ordinated signals is then given by:  

No = 0.25 Q t [z + sqrt (z2 + 6 (x - xo) / (Q t))] for x > xo (29) 
     = 0 x ≤ xo 

This expression corresponds to Equation (16), the only difference is that the constant 12 under square 
root is replaced by 6.  The expression which corresponds to Equation (17) is obtained similarly by 
replacing the constant 4 under the square root by 2:  

No = 0.25 Q t [z + sqrt (z2 + 2 x / (Q t))]  (30) 

The overflow components of delay, stop rate and queue length at co-ordinated signals have the same 
form as those in Equations (26) to (28), i.e. (No x), (No / qc) and (No), respectively, with No given by 
Equation (29), or alternatively Equation (30).  

The uniform components (Du, hu, Nu) can be calculated using a deterministic simulation model such as 
the TRANSYT model. Simplified analytical expressions can also be used for this purpose, e.g. as in 
MITROP computer program (Gartner, et al 1975).  It is recommended that the overflow components of 
stop rate and average queue length as described above are added to the stop rate and queue length 
calculations of the TRANSYT program. The correction to stops would allow for multiple stops under 
heavy traffic conditions, and would probably affect the optimum timing results.  

7. CONCLUSION 
The purpose of developing the time-dependent expressions given in this paper was to provide simple 
working models to predict traffic operating characteristics at signals, rather than obtain theoretically 
perfect but inevitably more complicated models. The expressions given in this paper are intended for 
use in a fashion similar to the use of the traditional Webster (1958) and Miller (1968) formulae which 
are limited to undersaturated cases.  

It is possible to use the basic relationship given here to derive more comprehensive expressions to 
predict conditions in consecutive time periods. Such expressions will appear to be more complicated 
than those given in this paper, but can be implemented by means of a computer algorithm (e.g. see 
Mayne 1979).  

A study of the optimum signal timings obtained using the time-dependent expressions given in this 
paper compared with those given by the Webster (1958) and Miller (1968) formulae is in progress.  
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APPENDIX - A NOTE ON VARIOUS DELAY EXPRESSIONS 
Ohno (1979) proposed  the following steady-state expression for average delay at isolated fixed-time 
signals as a good approximation to an ‘exact’ theoretical solution obtained using a special computer 
algorithm for the’ Poisson arrival-constant saturation headway’ process.  

d = 0.5 c (1 - u)2 / (1 - y) + ((1 - u) / (1 - y)) (No / q) + (A.1) 
          ((1 - u) / (1 - y)) / (2 s) +  ((1 - u) / (1 - y)2) / (2 s) 

where 
d = average delay per vehicle in seconds, 
u = g / c = green time ratio, i.e. the proportion of the cycle that is effectively green 
g = effective green time in seconds, 
c = cycle time in seconds, 
y = flow ratio (=q/s), 
q = average arrival rate (flow) in vehicles per seconds, 
s = saturation flow in vehicles per second, 
No = average overflow queue in vehicles obtained from Equation (8).   

The Miller (1968) formula for average delay, which is obtained from Equation (9) as d = D / q, is  

d = 0.5 c (1 - u)2 / (1 - y) + ((1 - u) / (1 - y)) (No / q)  (A.2) 

where x = (q c )/ (s g) is the degree of saturation.  

It is seen that the difference between Equation (A.1) and Equation (A.2) is merely due to the third and 
fourth terms; Equation (A.1) was called the modified Miller formula by Ohno.  

The following average delay expression corresponds to the approximation given by Equation (18) 
used to modify the second term of Equation (9):  

d = 0.5 c (1 - u)2 / (1 - y) + No x / q  (A.3) 

where x = degree of saturation ( = qc/sg)  

Also of interest is the widely used Webster (1958) formula: 

d = 0.5 c (1 - u)2 / (1 - y) + 0.5 x2 / (q (1 - x)) (A.4)  
          - 0.65 (c / q2)1/3 x(2+5u) 
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Average delays calculated from the above expressions are given in Tables A.1 and A.2 for the data 
used in Ohno’s (1978) Figures 2 and 3. In Table A.1, c = 90 s, g = 45 s, s = 1.0 veh/s (3600 veh/h), 
hence u = 0.50, sg = 45. The value of y is varied and the average delay, d, is calculated for each y 
value. In Table A.2, c = 90 s, q = 0.4 veh/s (1400 veh/h), s = 1.0 veh/s, hence y = 0.40. The value of u 
is varied and the average delay is calculated. In both tables, the degree of saturation, x is also given 
as a better indicator of congestion levels. For Equations (A.1) and  (A.2), No is calculated from 
Equation (8).  For Equation (A.3), No is calculated from Equation (13).  

The following conclusions are drawn from a comparison of delay values from expressions given in 
Tables A.1 and A.2:  
(a) The absolute differences are very small (about one second only in most cases). Accepting the 

results from Equation (A.1) as a basis for comparison, Equations (A.2) and (A.3) are found to 
give slightly lower values, whereas the Webster formula (Equation A.4) is found to give slightly 
higher values for high degree of saturation. However, the difference can hardly be said to be 
practically significant.  

(b) Ohno’s (1978) work indicates some large relative errors for expressions of the type Equations 
(A.2) to (A.4). However, consideration of the relative differences alone may be misleading since 
it is found that they increase as the absolute differences decrease. For example, Ohno’s (1978) 
Figure 3 (for the data in Table A.2 of this paper) shows very large errors for low degrees of 
saturation (high u values) in which case absolute delay values are of the order of 1 sec.  

(c) Approximations introduced in this paper, namely Equation (13) for the average overflow queue 
and Equation (18) for the random delay term are found to be satisfactory (compare the results 
from Equations (A.2) and (A.3) given in Tables A.1 and A.2) indicating that the basis of time-
dependent expressions given in this paper are reliable.  

 

 

Table A.1 - Average delay values (seconds) for c = 90 s, u = 0.50, s = 3600 veh/h 

y = 0.10 0.20 0.30 0.40 0.45 0.47  

x = 0.20 0.40 0.60 0.80 0.90 0.94  

Eqn (A.1) * 13.1 14.8 17.0 20.4 25.5 32.1 Ohno (1978) 

Eqn (A.2) * 12.5 14.1 16.1 19.3 24.2 30.7 Miller (1968) 

Eqn (A.3) ** 12.5 14.1 16.1 19.6 25.1 31.0 This paper 

Eqn (A.4) 12.7 14.6 16.9 20.8 26.4 33.3 Webster (1958) 

* No from Equation (8) 
** No from Equation (13) 

 

Table A.2 - Average delay values (seconds) for c = 90 s, u = 0.40, s = 3600 veh/h 

u = 0.80 0.70 0.60 0.50 0.44 0.42  

x = 0.50 0.57 0.67 0.80 0.90 0.95  

Eqn (A.1) * 3.4 7.4 12.9 20.4 28.9 40.8 Ohno (1978) 

Eqn (A.2) * 3.0 6.8 12.0 19.3 27.7 39.5 Miller (1968) 

Eqn (A.3) ** 3.0 6.8 12.0 19.6 28.7 39.8 This paper 

Eqn (A.4) 3.5 7.5 13.0 20.8 29.8 42.4 Webster (1958) 

* No from Equation (8) 
** No from Equation (13) 
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