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Acceleration Profile Models for Vehicles
in Road T'raffic

R. AKCELIK and D. C. BIGGS
Australian Road Research Board, Vermont South, Victoria, Australia

Three new models of acceleration profile (a two-term sinusoidal, a three-term sinusoidal, and a
polvnomial model) are described. These models yield the S-shaped speed-time trace indicated by
data from driving in real-life traffic conditions, satisfy the realistic conditions of zero jerk (except
the two-term sinusoidal model} and zero acceleration at the start and end of the acceleration, and
allow for the position and the value of the maximum acceleration to vary for a given average
acceleration rate. A comparative evaluation of these three models and the previously known constant
and linear-decreasing acceleration models is reported. The evaluation criteria are distance traveled
and fuel consumed during acceleration. The performances of the five models are compared under
three sets of conditions: acceleration time and distence known, time known but distance unknown,
and both time and distance unknown. The comparisons are made separately for central business
district (CBD), other urban and nonurban traffic conditions. The polynomial model has been found
ta be the best overall for predicting acceleration distance and fuel consumption. Similar results have
been found for deceleration profiles. Dependence of fuel consumption on acceleration rate and profile

is also discussed. Suggestions for further work using the results of this report are included.

INTRODUCTION

The modeling of the acceleration and speed pro-
files of vehicles in a traffic stream is a fundamental
question in traffic and fuel consumption modeling.
The term acceleration profile will be used to refer to
the acceleration-time trace of a vehicle during an
acceleration from an initial speed of v, to a final speed
of v;. Similarly, the corresponding speed-time trace
will be called the speed profile of the vehicle. Models
of acceleration/speed profiles of vehicles in road
traffic can be used in microscopic traffic simulation
models in conjunction with an instantaneous fuel
consumption model to estimate fuel consumption dur-
ing accelerations and decelerations. They are useful
in investigating the effect of the acceleration profile
and the acceleration rate on fuel consumption.

The need for a mathematical description of the
acceleration/speed profile for the purpose of fuel con-
sumption modeling was discussed and constant and
linear-decreasing models of acceleration considered in
early papers by BAYLEY,!" AKCELIK") and AKCELIK
AND BAYLEY." While the constant acceleration model
is a convenient simplification, some empirical evi-
dence for the linear-decreasing acceleration model was
given by SaMUELS!! and LEE et al.” However, both
of these models assume a high initial acceleration
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value which is not realistic. Our observation of data
from driving in real-life traffic indicated that the
speed-time curve typically had an S shape as shown
in Figure 1. This was based on the examination of
extensive second-by-second speed-time data collected
by the Sydney University, Mechanical Engineering
Department, by means of an instrumented car in
urban, suburban and rural road conditions (TOMLIN
et al.'"). These data were collected using the chase-
car method, and included all types of acceleration in
traffic. There is large variation in data, and the accel-
eration and speed profiles are not often as smooth as
indicated by data points in Figure 1 which represents
a fairly typical case. Data collected by Jarvis'” also
indicate S-shaped speed profiles for vehicles acceler-
ating from a rural intersection. An interesting aspect
of Figure 1 is that it emphasizes the physical require-
ments for the model of zero acceleration, a = 0, and
zero jerk, da/dt = 0, at the start and end of acceleration
{at times t = 0 and ¢ = ;). Complete notation for this
study 1s given in Table L

Acceleration profiles vary widely from driver to
driver and are also dependent on the type of vehicle
and the traffic and weather conditions. A robust model
is required which will provide good estimates of accel-
eration and speed profiles in a wide variety of situa-
tions. Three new models of acceleration profile,

0041- 1655/87/2101- (K6 $01 .25
ici 1987 Operations Hesearch Society of America



am - 7
|
!
m . Data
. | -~ points
€ e
2
-
hd a
! - = ———
&
[¥]
(¥}
L
-

0

M
=
o
©
[
a
7]
v.=10

Time, t

Fig. 1. Tvpical aceeleration and speed profiles for accelerations
during on-road driving when initial speed is zero.

TABLE 1
Notation

{ = time since the start of acceleration
a(t) = acceleration rate at time t {dv/dt)
v{t) = speed at time ¢ {dx/dt)
x(t) = distance traveled at time ¢
t, = acceleration time, i.e. the total time to reach the final
speed
tn = time of maximum acceleration
a,, — maximum acceleration, a(f,)
@ = average acceleration, (v, — v))/t,
x. = distance traveled during acceleration, x(t,}
v, = initial speed, v(0)
vy, = final speed, vt}
v, = average speed during acceleration, x./t.
F, = total fuel consumed during accleration
F, = excess fuel consumed during acceleration, F, — fx.
where f. is the steady-speed cruise fuel consumption per
unit distance
p = a ratio which relates to the shape of the speed-time curve
of acceleration, (v, — v}/ (v — v}
= = acceleration ratio, i.e. the ratio of acceleration rate at time
t to the average acceleration rate, a/d
o = maximum acceleration ratio, a./d
ft = time ratio, i.e. the ratio of time since the start of accel-
eration to the total acceleration time, t/t,
#,, = time ratio for maximum acceleration, t./{,

namely a two-term sinusoidal, a three-term sinus-
oidal and a polynomial model were considered for
this purpose. The sinusoidal models, as well as the
constant and linear-decreasing acceleration models
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are described in Appendix A. The polynomial model,
which was found to be the best model in a comparative
evaluation of these models, is described in detail in
the following section, The method of evaluation is
described in Appendix B. All of the three new models
yield the S-shaped profiles indicated by real-life data,
satisfy the realistic conditions of zero acceleration at
the start and end of the acceleration, and allow for
the position and the value of maximum acceleration
to vary for a given average acceleration rate. Only the
three-term sinusoidal and polynomial models satisfy
the conditions of zero jerk at the start and end of the
acceleration.

Following the description of the polynomial model,
the method of estimating model parameters is
explained. In the subsequent sections, the results of
the comparison of the constant, linear-decreasing, two
and three-term sinusocidal and polynomial accelera-
tion models are summarized for both acceleration and
deceleration cases. Finally, a discussion of the depend-
ence of fuel consumption on acceleration rate and
profile is presented. In the concluding section, the
findings are summarized and recommendations for
further work are given. For more detail on the findings
reported in this paper, see AKCELIK et al.™ and B1GGs
AND AKCELIK."!

THE POLYNOMIAL MODEL OF ACCELERATION

THE GENERAL form of the polynomial function to
estimate the acceleration rate at time £ is given by:

a{t) = ra,f"(1 — 6™* (n>0,m>-05n) (1)

where
a(t) = acceleration rate at time ¢,
a,, = maximum acceleration,
fi = time ratio, t/t.,
t, = acceleration time,

m, n = parameters to be determined, and
r = a parameter which depends on the values of
m, n.

This function satisfies the following conditions:

{(a) zero acceleration at the start and end of the
acceleration:

a=0 at t=0 and t=1{,
{iie.atd =0andl)
(b) zero jerk at the start and end of the acceleration:
da/dt=0 at t=0 and ¢=t,
{(i.e. at #=0and 1).

(2)

(3)

It should be noted that there is a discontinuity in the
jerk function at the point where n = 1. The jerk is
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zero for values of n which approach one from above
and below one. However, the fact that the func-
tion gives nonzero jerk for n = 1 has little practical
importance as shown by the small difference overall,
and the negligible difference near the start of accel-
eration, between the acceleration profiles derived us-
ingn=1and n = 1.1 (Biggs and Akcelik'). Therefore,
the condition of n > 0 is used in Equation 1.

Given the conditions n > 0 and m > ~0.5n, the
parameters m and n can be adjusted so that the
function represents the range of acceleration profiles
which occur on the read. The values of parameters n
and m could be chosen according to one, or a combi-
nation, of the following profile characteristics.

{a) The ratio of average speed in acceleration to the
final speed, p = v,/ty = x,/ust, for zero initial
speed. This is equivalent to choosing acceleration
distance as a profile characteristic for determining
n and m.

(b) The position of maximum acceleration, 0, =
tm/ta, where ¢, is the time when maximum accel-
eration is achieved, a(t.) = a,. Unlike the
sinusoidal models described in Appendix A, the
polynomial model has practically no restriction
on the value of t,./t,, i.e. the maximum accelera-
tion can occur anytime in the range 0 to ¢,.

{c) The sharpness of the acceleration-time curve as
characterized by the maximum acceleration ratio
O = G/ 4.

The values of n and m should ideally be chosen to
satisfy conditions on both 0, and p{or both ¢, and p),
simultaneously. However, it is not possible to give
analytical expressions for the simultaneous calcula-
tion of m and n. As a simple procedure, a value of n
can be chosen first, and then the value of m can be
chosen using the given value of n. Tests using variable
values of n, compared with n set to 1.0 and 1.1 have
shown that the increase in fuel consumption accuracy
when n is allowed to vary is very small. See Biggs and
Akcelik' for details. Comparison of errors in accel-
eration distance and fuel consumption for the cases
where n is constant indicate that the model with
n = 1.0 is at least as good as, if not better than,
the model with n = 1.1. Therefore, the following
simpler model with n = 1.0 is recommended for use in
practice:

a(t) = ra,#4{1 - 8™?% (m > —0.5) (4}

where ¢ is in the same units as a,.(m/s” or km/h/s).
Other important relationships for the polynomial
model given by Equation 4 are as follows:

vlt) = v, + t,ranb40.5 — 2 8™/{m + 2) (5)
+ 6°"/(2m + 2)]

where v is km/h and a,, is km/h/s {or v is in m/s and
a is in m/s?).

r=[1+2m)*"")/4m* (6)
an = a/rq = (v; — vi)/rqt, (7)
g =m*/[2m + 2)}{m + 2)] (8)
Xy = Uity + rsa.ty’ (9)

s = — 2/[(m + 2)(m + 3)]
+ 1/[(2m + 2)(2m + 3)]
B = tmfts = (1 4+ 2m)~Y™ (1)

(10

Om = Un/0 = 1/rq
=8(m + Di(m + 2)(1 + 2m)"@r/m

2m? + 16m + 19
p=———=-= (13)

(12)

where v, = x./t,.

The values of #,,, 0., and p as a function of m from
Equations 11 to 13 are given in Table II and are shown
in Figure 2 for positive values of m. The observed
ranges which include approximately 98% of accelera-
tions in the Sydney data are also given for these
parameters in Table II. The following characteristics
of the observed accelerations should also be noted:

(a} all accelerations with 4, larger than 0.70 are for
speeds below 60 km/h,

(b} all accelerations with o, larger than 3.0 are for
average acceleration rates below 3.5 km/h/s, and

(¢) all accelerations with p less than 0.44 are for
speeds below 60 km/h.

Considering these characteristics of data, the values
of 8,,, 7, and p predicted by the polynomial model
correspond to the ranges observed in practice reason-
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Fig. 2. Values of 0., v, and p as a function of parameter m for
the poiynumial acceleration model (n = 1.0).
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TABLE Il
Values of 8, am and p as a Function of Parameter m for the Polynomial
Acceleration Model (n = 1.0)

m B = ty/tg = Om/8 p=vglve ()
-0.2 (.08 2.49 0.74
0.1 0.1 2.30 0.72

0.01 0.4 2.16 0.70

(.06 0.15 2.11 0.70

0.1 0.16 2.07 0.69
0.5 0.25 i.88 0.64

1.0 0.33 .78 0.60

2.0 0.45 |.72 0.54

4.0 0.58 171 0.48

6.0 0.65 1.73 0.45

8.1 0.70 .75 0.43
10.0 0.74 1.77 0.41

Observed 0.08 - 0.78 1.45 - 4,20 0.40 - 0.75
Range

(*) For acceleration from rest, i.e. v; = 0 in Equation {£3)

ably well. Among these three variables, prediction of
p is the most important and prediction of o, is the
least important in terms of the estimation of acceler-
ation distance and fuel consumption. For this reason,
the polynomial model of acceleration performs well as
it will be seen in the following sections.

In Figure 3, acceleration profiles predicted by the
polynomial model are shown for three values of m,
which represent the range of profiles observed in
practice. The corresponding speed profiles are shown
in Figure 4. Smaller values of m{curve A) correspond
to accelerations to higher final speeds (curve A) where
relatively high maximum accelerations occur closer to
the start of acceleration as seen in Figure 3. The area
under curve A is the largest in Figure 4, which indi-
cates the largest acceleration distance for a given final
speed. The shape of curve A is closest to the shape of
the speed profile from a linear-decreasing acceleration
model. If the first few seconds of acceleration is
ignored, profile A in Figure 3 could, in fact, be approx-
imated by a linear-decreasing acceleration profile (see
Appendix A).

The instantaneous fuel consumption values which
correspond to the acceleration and speed profiles
given in Figures 3 and 4 are shown in Figure 5.
These are calculated for an acceleration from rest to
v, = 60 km/h at an average rate of @ = 3.0 km/h/s
using the fuel consumption model described in Appen-
dix C. Figure 5 is further discussed in the section on
dependence of fuel consumption on acceleration rate
and profile.

ESTIMATION OF MODEL PARAMETERS

AN INDIVIDUAL acceleration is commonly specified
by the values of four variables: initial and final
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Fig. 3. Acceleration profiles predicted by the polynomial mudel
for varying values of parameter m.
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Fig. 4. Speed profiles predicted by the polynomial maodel for
varying values of parameter m (these profiles correspond to the
acceleration profiles in Fig. 3).

speeds, v; and v, acceleration time, ., and accelera-
tion distance, x,. If the values of these four variables
are known, the following steps can be taken to cali-
brate the model given by Equation 4 for a given
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km/h, @ = 3 km/h/s) for various acceleration profiles (m = 0.06;
1.4k 8.1 as in Figs. 3 and 4). Fuel consumption is predicted by the
energy model described in Appendix C (« is the idle fuel rate and [,
is the constant-speed fuel consumption rate at speed u;).

acceleration profile:
{a} First, calculate p as follows:
p = (3.6 x5/t. — v}/ (v, — Vi) (14)
where x, is in meters, ¢, is in seconds, v; and v, are
in km/h.

(b) Then choose a value of m so that the modeled
acceleration distance corresponds to the observed
distance. For this purpose, calculate m from the
following equation using the value of p calculated
in the first step:

m = (—A: + (A2 — 44,4,)'7) /24, (15)

where
Ag=27p—19 (15a)
Ar=Ag+ 4 (15h)
As=6p— 2. {15¢)

It should be noted that it is necessary to truncate the
value of p to a value slightly larger than ' since the
value of m approaches infinity as p approaches /4 and
A, approaches zero.

(¢) Finally, calculate the value of ra,, from:
ra, = [2(m + 1)}{(m + 2)/m”]a (18)
where @ = (v; — v:)/ta.
Example
Given v; = 0, v;= 81 km/h, t, = 27 5, x, = 340 m.
(a) From Equation 14, p = 45.3/81 = 0.560.

(b} From Equation 15,
Ay=-388 A,=0.12, A,=136 and m=1.65.
(¢) From Eguation 16,
a = 81/27 = 3.0 km/h/s
and ra, = 7.106 x 3.0 = 21.317.

Therefore, from Equation 4, acceleration in km/h/s is
given by

alt) = 2L.317(L/27T)(1 — (£/27) %)%
From Equation 5, speed in km/h is given by
v(t) = 575.56(¢/27)*
- (0.5 — 0.548(£/27)" + 0.189(¢/27)*),

From Equation 11, the maximum acceleration is pre-
dicted to occur when @, = ¢,,/t, = 0.413 (¢, = 11.2s).
Therefore, the value of maximum acceleration is

an = altm)= 21.317 % 0.413 x 0.589
5.2 km/h/s,
a,/d = 5.2/3.0=1."73.

and Om =

The speed at the time when maximum acceleration is
reached 1s

vit,) = 57556 X (0.413)% X 0.383 = 37.6 km/h.

Estimation when Acceleration Time and/or
Distance Are Unknown

If the acceleration time, ¢,, and/or the acceleration
distance, x,, are not known, the following regression
equations, which are based on Sydney data can be
used to estimate ¢, and/or x, from known initial and
final speeds, v, and vy

Uy—

= ; 17
2.08 + 0.127(v, — v;)'* = 0.0182y, amn

la

x, = (0.467 + 0.0020u; — 0.0021v;) (v; + v/)t./3.6 (18}

where v;, vy are in km/h, ¢, is in seconds, and x, 15 in
meters.

For the example given above, v; = 0, v, = 81 km/h,
and hence, t, = 81/3.223 = 25.1 s and x, = 0.629 X
81 x 25.1/3.6 = 355 m are estimated. Using these
values, p = 0.629 is found from Equation 13 (com-
pare with p = 0.560 for the known values of £, = 27 s
and x, = 340 m).

COMPARISON OF ALTERNATIVE MODELS

THE BASIS of evaluating alternative models of accel-
eration profile was the comparison of relative errors



in the prediction of acceleration distance and accel-
eration fuel consumption. The method of evaluation
is described in detail in Appendix B. The following
five models of acceleration were compared in terms of
their ability to predict the acceleration distance and
the acceleration fuel consumption:

(a) Constant acceleration model (Equation A.l in
Appendix A).

(b) Linear-decreasing acceleration model (Equation
A.5 in Appendix A).

(¢} Two-term sinusoidal acceleration model (Equa-
tion A.9 in Appendix A).

(d) Three-term sinusoidal acceleration model (Equa-
tion A.18 in Appendix A}.

(e) Polynomial acceleration model (Equation 4 in the
previous section).

The observed acceleration profiles were extracted
from extensive on-road data collected by the Sydney
University, Mechanical Engineering Department, us-
ing an instrumented 3.3 L automatic GMH Commo-
dore sedan (Tomlin et al.'"}, The chase-car technique
was used while driving in traffic. Tests were conducted
over 956 km of urban roads and 1361 km of nonurban
roads. A weighted three-point moving average method
of smoothing was applied to the raw speed-time data
provided by the Sydney University. This method of
smoothing was applied in order to decrease the amount
of random variation in the second-by-second speed
values without losing real changes in speed which
occur in on-road driving. The second-by-second accel-
eration values were calculated using smoothed speed
values. A detailed description of the method used is
given in Akcelik et al.™

In the study reported here, only accelerations from
the “stop” position were analyzed. A “stop” was taken
as a speed of less than 1 km/h. At the same time,
accelerations to less than 20 km/h were not included.
Therefore, the data were limited to conditions repre-
sented by v; = 0 and vy 2 20 km/h. The end of the
acceleration was taken as the time at which the speed
stopped increasing and did not increase greatly during
the next 5 seconds. On this basis, a total of 1037
accelerations were identified for analysis.

The comparisons of different acceleration models
were made separately for the three driving environ-
ments- central business district (CBD), urban (exclud-
ing CBD) and nonurban. The comparisons were made
under three sets of conditions:

(a) acceleration time and distance (t,, x,) known,

(b) acceleration time (t,) known but distance (x.)
unknown, and

{c) acceleration time and distance {¢;, x.) unknown.
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In case (a), the estimated model parameters B, P
and m for the sinusoidal and polynomial models were
based on known acceleration distances. In cases (bh)
and (c), where the acceleration distance was treated
as unknown, the model parameters were estimated as
a function of the final speed, vy, using the following
equations which are regression equations derived for
the Sydney data;

2-term sinusoidal:

B = 0.13 + 0.0054vy,
(19)
or 0.5 whichever is smaller.

3-term sinusocidal:

P = —0.097 — 0.0018v,,
(20)
or —0.25 whichever is larger.

Polynomial:
p = 0.53 + 0.00130,. {21)

For the polynomial model, parameter p is used in
Equation 15 to calculate the value of parameter m.

In case {(c) where the acceleration time, f,, was
treated as unknown, it was estimated from Equation
17 by putting v, = 0.

Results

The percentage errors in distance and fuel con-
sumption (Equations B.4 and B.5 in Appendix B) were
calculated for all accelerations for each of the five
models under the three driving locations. Fuel con-
sumption values were calculated for the Melbourne
University test car whose characteristics are described
in Appendix C. The mean and standard deviation (8D)
of the percentage errors were found for each of the
three driving locations and are given in Tables I1I and
IV. The sp of the percentage errors for any one subset
of the data varies among the models by only a small
amount indicating that the variation is due, to a large
extent, to driver behavior. The mean percentage error,
or the bias, is a measure of the error in estimation
when accelerations are repeated many times. This is
important if the models are to be included in traffic
network simulations where the average distance and
total fuel consumption over many accelerations are of
interest. The SD of the percentage error is of less
importance since the Sh of the average values of
acceleration distance and fuel consumption decrease
as the number of accelerations made by vehicles in
the network increases. The average of the standard
percentage errors, S%E (Equation B.6 in Appendix B)
over the three driving locations for each model and
each set of conditions regarding i,, x, are given near
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the bottom of Tables III and IV. The results are (b)
discussed below.

{a) The results for t, and x, known: The constant and
linear-decreasing models of acceleration do not
make use of the fact that x, 1s known. The errors
are therefore greater than for the other three
models where a parameter is dependent on x,
(calculated through Equations 19 to 21). Errors
in estimated distance still occur for the sinusoidal
and polynomial models due to restrictions on pa- (c)
rameter values. These errors are largest for the
three-term sinusoidal model. The polynomial
model is superior to the other models in terms of
mean and Spb of the percentage errors in both
distance and fuel consumption.

TABLE 1l1

The results for t, known, x, unknown: Although
8D values of percentage errors are similar for all
models, the polynomial model is the best model
in predicting acceleration distance and fuel con-
sumption in terms of the mean percentage errors,
As summarised by the average S%E values, the
two-term sinuscidal model is the second hest
model in predicting acceleration distance and fuel
consumption as is the case where both ¢, and x,
are known.

The results for t, and x, unknown: In terms of
S%E values, the predictions from different models
are seen to be comparable. However, the mean
values of percentage errors in estimated distances
are high for the constant, linear-decreasing and
two-term sinusoidal models, while the polynomial

Percentage Errors in Predicted Distance for Five Acceleration Profile Models for Sydney On-Road
Acceleration Data

Condition L.ocation Mean and S[D* of % Error in Estimated Distance
Constant Lin-dec 2-5in 3-5in Polyn
CBD -12.8 16.3 -2 -3 0.0
(11.4) (15.2) (3.3) (5.2} (0.2}
tar %a
Urban -15.1 13,2 -2.2 -4.6 0.0
(10,7 (14.3) (3.8) (5.7} {0.1)
known
Non-urban -15.2 13.1 -1.8 -4.5 0.0
(10.6) (14.2) (3.2 (5.3} (0.1}
cBD 1.1 -2.7 0.8
(13.2) {12.7) {13.2)
ta known
Urban As for 0.9 -4.2 0.2
b Xg known (12.00 a7 (12.2)

Xq unknown

MNon-urban 4.2 -2.7 3.6
(11.2) (1.2 (11.2)
CBD -l4.4 4.1 -13.6 4.5 -0.7
(26.6) (35.4} (26.8) (29.8) (31.2)
tas Xq
Urban -17.7 9.8 -18.9 -7.1 -2.2
(26.8) {35.7) (27.00 (30.1) (31.7)
urknown
MNon-urban -17.5 10.0 -16.7 -5.4 1.3
(24.5) (32.6} (24.7) (27.6) (29.2)
Average S%E for:
tar Xg known 18§ 20.4 3.9 6.8 ol
14 known, x, unknown 8.1 20.4 12.4 12.5 12.4
tqr¥g unknown 30.8 36.4 30.6 22.8 30.8
Average St (m) far 76.0 57.3 75.1 64,2 59.4
tg Xg Urknown

* Standard deviation of percentage error is given in brackets below mean percentage error.
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Condition L ocation Mean and SD* of % Error in Estimated Fuet Consumption
Constant Lin-dec 2-5in 3-5in Pelyn
CBD -0.4 1.9 1.9 6.6 1.2
{4.8) (7.8) (3.3 (4.6} 2.7)
IG, Xq
Urban -5 2.3 2.4 7.2 ].2
(4.7} (5.6) (3.4} (4.6} (2.8)
known
MNon-urban 10,7 2.5 4.0 9.2 2.6
(4.6} 5.5 (3.6) (5.0 (2.3)
cBD 0.8 5.5 0.9
(4.9) (5.5) {h.8)
10 known
Urban As for 1.9 6.5 1.2
ts % Known (4.5) (5.1) 4.2)
X unknown
Non-urban 3.6 8.6 1.6
(4.9) (5.8) (4.1
CBD -2.2 Q.1 1.2 3.4 It
(7.2 (8.3) (7.5) (7.8) (7.3}
tar Xq
Urban -1.0 2.5 2.9 &l 0.8
(7.3) (7.8) (7.6) (8.0 (7.3)
unknown
MNon-urban -0.5 32 4.2 9.1 2.1
3.1y (9.9 (9.3) (10.0) (9.2)
Average S%E for:
tyr *q known 7.8 &.7 4.5 2.1 3.2
1, known, x unknown 7.8 6.7 5.3 8.9 4.6
tgaxg unknown 8.0 .0 B.7 10.9 8.1
Average SE {mL) for 3.29 3.76 3.78 5.31 3.46

tqr ¥q Unknown

* Standard deviation of percentage error is given in brackets below mean percentage error.

model is best is this respect. It should also be
noted that the constant and two-term sinusoidal
acceleration models consistently underestimate
the acceleration distances for large final speed
values. This is indicated by high values of stand-
ard error (SE) for these models given in the bottom
line of Table II (when the errors are proportioned
to the value being predicted, the SE values place
more weight than the 8%E values on the errors
for high distance and fuel consumption values).
Although to a lesser extent, the three-term si-
nusoidal model also underestimates acceleration
distances for high final speeds. In terms of the
estimation of fuel consumption, the polynomial
and constant acceleration models have similar
performances when estimated values of ¢, as well
as x, are used.

It is concluded that the polynomial model is the

best overall in predicting the acceleration distance
and fuel consumption. This is clearly so when at least
the acceleration time, {,, is known. The predictive
power of the polynomial model is displayed in the
plots of the fuel consumption (estimated by energy
model and adjusted to observed acceleration distance
{(Equation B.2) in Appendix B), and distance of the
observed profile versus those for the profile predicted
by the polynomial model in Figures 6 and 7. It is seen
in Figure 6 that the accuracy of fuel consumption
estimates is very high when the acceleration time and
distance are known. On the other hand, the accuracy
of distance estimates is not as high when both the
acceleration time and distance are unknown as seen
in Figure 7. The scatter is mainly because of variation
in the acceieration rate for a given final speed which
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the acceleration profile is predicted by the polynomial model. The
acceleration distance is caleulated from x. = pust, where p is esti-
mated from Fquation 21 and ¢, is estimated from Equation 17.

is not allowed for when the estimated mean values of
acceleration time are used.

To determine the general applicability of these
acceleration profile models it is necessary to test the
models on independent data sets. A small set of on-

road speed data collected in Melbourne was available
for this task and the results of this analysis showed
that the polynomial model (with parameters derived
from Sydney data) was found to be the best of the five
models at predicting acceleration distance and fuel
consumption under the three sets of testing conditions
on ¢, and x,. However, the Melbourne data included
only 11 accelerations and further testing using more
extensive data is necessary.

APPLICATION TO DECELERATION PROFILES

DECELERATIONS from an initial speed, v;, to a final
speed, v, < v;, were identified in the Sydney data using
a procedure which is similar to, but the reverse of, the
acceleration case (v; > v;). As with the case of accel-
erations, only decelerations from cruise to rest (¢, < 1
km/h) were identified. Only decelerations from
v; Z 20 km/h were considered, which gave 1058 de-
celerations for analysis. See Biggs and Akcelik!"!
for details.

The acceleration-time and speed-time traces during
a deceleration have the typical shapes shown in Figure
8. Comparing with Figure 1, it is seen that the accel-
eration and speed profiles for decelerations are almost
mirror images of the profiles for accelerations but with
the time of absolute maximum acceleration occurring
later. The same form of the model can therefore he
used to mode] both acceleration {speeding up) and

m
0
L
Acceleration, ! o
a R ) ;
-~
e
Data
points I
L
Ay o=
Yi
Speed, |
v
V1=0
Y Time, t |

Fig. 8. Typical acceleration and speed profiles for decelerations
during on-road driving when final speed is zero.



deceleration (slowing down) profiles. Similar to Equa-
tions 17 and 18, the following regression equations
derived from Sydney data can be used to estimate
deceleration time, t;, and distance, x,, when these are
not known.

v, — Uy

= - (22)
1.71 + 0.238(v; — vy) ' — 0.0090v,

Ly

xg = (0.473 + 0.00155¢; — 0001370, ) (v; + vr)ta/3.6 (23)

where v,, vy are in km/h, ¢, is in seconds, and x, is in
meters.
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For example, for a deceleration from 81 km/h to
rest, t; = 81/3.852 = 21.0 5 and x;, = 0.599 X 81 X
21.0/3.6 = 283 m are estimated. Average speed during
the deceleration is v, = 3.6 X 283/21.0 = 48.5 km/h,
hence p = 48.5/81 = 0.599 is found.

The five acceleration models were tested with pro-
files for decelerations from a final speed to rest in a
similar way to comparisons for acceleration profiles.
The results are summarized in Tables V and VI. In
the cases where the deceleration distance, x;, was
treated as unknown, the parameters of the sinusoidal
and polynomial models were calculated from the fol-
lowing regression equations derived from the Sydney

TABLE V

Percentage Errors in Predicted Distance for Five Deceleration Profile Models for Sydney On-Road

Deceleration Data

Condition Location Mean and SD* of % Error in Estimated Distance
Constant Lin-dec 2-5in 3-5in Palyn
cBD 10.9 14,7 0.0 -2.8 -0.4
(13.5) 17.5) 0.0) (5.4) (1.4)
tar Xg
Urban 13.3 12.5 -0.0 -4.2 -1.0
(12.5) {1&.1} 0.0) (6.2) (2.7)
known
Nen-urban -11.7 14.9 0.0 -3.4 -0.7
(1.9 (15.2) (0.0 (5.4) (2.2)
CBD 1.5 5.1 0.9
(15.2) (15.9) (15.1)
g known
Urban As for 1.0 2.3 0.0
tar Xg known {14.1} (14.7) {141}
x4 unknown
Non-urban 5.7 4,2 4.2
(14.1) {14.0) (13.8)
B -0.5 28.6 13.5 17.4 13.6
(32.9) (42.6} (37.6) (38.8) (37.7)
fd, Xd
Urban 1.7 19.9 7.4 8.9 7.7
(31.86) (40.9) (36.4) (37.2) (36.5)
unknown
MNen-urban 3.6 35.2 24.0 22.2 24.3
(39.8) (51.7) (47.4) (46.7) {47.6)
Average S%E for:
t4r %4 known 17.4 21.5 0.0 6.7 2.3
t 4 known, x4 unknown 7.4 21.5 14,9 15.4 4.6
tgs X4 unknown 33.7 49.4 40.4 41.3 40.5
Average SE (m) for
Tds %g unknown 65.7 60. | 59,1 59.2 59.1

* Standard deviation of percentage error is given in brackets below mean percentage error,
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TABLE VI
Percentage Errors in Predicted Fuel Consumption for Five Deceleration Profile Models for Svdney
On-Road Deceleration Data

Condition Location Mean and SD* of % Error in Estimated Fuel Consumption
Constant Lin-dec. 2-5in 3-5in Polyn
CBD 2.9 -10.2 1.8 53 -1.7
(11.0) (9.5) (6.4) (6.8) (3.3}
fa g
Urban 1.3 -11.2 5.8 8.7 -2.5
(13.5) (41.3) (33.8) (9.4} (4.9}
known
Mon-urban -2.9 -16.7 1.0 9.9 -4.3
(18.5) (14.3) (11.0}) (11.5) (7.4)
CaD -0.8 2.3 -1.5
(3.1} (rm (9.0
t4 known
Urban As for -0.1 6.4 -2.7
tar %g known {10.9) (13.3) (15.3)
x4 unknown
Mon-urban -0.3 (8.4) -8.2
{14.0) (15.8) (14.0}
CBD 5.4 -5.0 i.6 5.0 0.7
(14.8) (14.8) (14.0} (16.5) (13.8)
T Xd
Urban 1.6l -12.0 0.0 6.7 -2.7
(15.5) {16.3) (14.5) (16.6) (14.0)
unknown
Non-urban -8.6 -23.4 4,7 5.6 -13.2
(26.3) 31.7} (26.5) (25.9) (27.%)
Average 5%E for:
tyr X g known 14.9 17.6 21,2 12.5 6.3
tq known,x 4 unknown 14.9 17.6 1.5 14.9 12,4
tgr xg unknown 20.5 27.5 19.4 21.0 2i.2
Average SE (mL) for
d, x4 unknown 3.7 3.5 3.0 1.8 3.1

* Standard deviation of percentage error is given in brackets below mean percentage error,

data (for v, = 0):

2-term sinusoidal:

B

or

—0.14 - 0.00390;,

3-term sinusoidal:

P = 0.097 + 0.0013v,

Polynomial:

—0.5 whichever is larger

or 0.25 whichever is smaller

p = 0.46 + 0.0008v;

{24)

(25)

(26)

When the deceleration time, t;, was treated as un-
known, it was estimated from Equation 22 by putting
Uy = 0.

The main conclusions from Tables V
and VI are:

(a)

(b}

[f deceleration time is known, the errors using the
polynomial model are smaller for fuel consump-
tion than with the other models and at least as
small as the other models for distance, when
distance is unknown.

If deceleration distance is unknown (and time is
known or unknown), the two-term sinusoidal and
polynomia) models have similar errors in distance



and fuel consumption and these errors are gener-
ally smaller than for the other three models tested.
The percentage errors in distance are smallest for
the constant model but the standard error is great-
est for that model.

Overall, the polynomial model is the best of the five
models tested in representing deceleration profiles.

DEPENDENCE OF FUEL CONSUMPTION ON
ACCELERATION RATE AND PROFILE

THE DEPENDENCE of fuel consumed during accelera-
tion on the acceleration rate and profile can be inves-
tigated using “excess” acceleration fuel consumption
as this avoids the problem of different acceleration
distances with different acceleration rates and pro-
files. Excess acceleration fuel consumption, F,, is the
actual acceleration fuel consumption less fuel con-
sumed while cruising along the acceleration distance
at a constant speed equal to the final speed in
acceleration.

The excess fuel consumption values for accelera-
tions with average rates of @ = 2, 3 and 5 km/h/s from
rest to final speeds of v; = 30, 60 and 90 km/h were
calculated for a wide range of profiles and the results
are given in Table VII. Excess acceleration fuel con-
sumption as a function of the average acceleration
rate and final speed are shown in Figure 9 for fixed
acceleration profiles of m = 0.06 and m = 8.1 in the
polynomial model. The existence of an optimum ac-
celeration rate for minimum fuel consumption can be
observed from Figure 9. This subject has been dis-
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cussed in detail in Biggs and Akcelik," and observed
optimum acceleration rates of 4.7, 1.6 and 1.6 km/h/s
have been reported for accelerations from rest to final
speeds of 30, 60 and 90 km/h, respectively. Using
Equations 18 and 15, m = 2.4, 1.2 and 0.5 have been
predicted for these speeds and the optimum accel-
eration rates for these profiles are 3.4, 2.2 and 1.0
km/h/s, respectively, as shown in Figure 9. The cor-
responding average acceleration rates used in practice
are predicted to be 2.8, 3.1 and 3.3 km/h/s from
Equation 17. Although these values do not allow
for variability among individual drivers, a very low

80 vg =90 km/h
c
2
4 L
E
2
£ 6ot ”
o = ™ B=3.3 (egn 17)
I ™o
i z r e
c E ~ Agpt=
3 opt=1.0
2 A
su® 40t N s
= B
E =
] r M
i . ~d=3,1(eqn 17}
g 20, Sopt=2.2
w m=24 A
P | vp =30 km/h
3-2.8. N - B
fegn 17) lopt=3d .
0 1.0 2.0 3.0 4.0 50 6.0

Average Acceleration Rate, 3 (km/h/s)

Fig. 9. Excess acceleration fuel consumption as a function of
final speed, vy, average acceleration rate, 4, and acceleration profile
(represented by parameter m of the polynomial model).

TABLE VIi
Excess Aceeleration Fuel Consumption for a Range of Acceleration Profites, Rates and Final Speeds™
m Bm o v = 30 km/h vy = 60 km/h vp = 90 km/h

ad-2 a=3 4a=5 a=2 a=3 4a=>5 d=2 a=3 a=5
0.06 0.15 0.70 8.6 8.4 9.0 27.1 28.5 33.2 51.8 58.1 7i.1
0.5 0.25 0.64 9.1 8.6 9.2 28.0 29.0 33.3 53.0 58.6 70.9
1.0 0.33 0.60 9.5 8.9 9.3 28.8 29.6 336 54.2 59.5 7.4
l.2 0.36 0.56 9.7 9.0 9.4 29.1 29.8 33.8 54.6 59.8 7.7
2.4 0.48 0.48 10.3 9.5 9.7 30.4 30.8 34.6 56.8 &1.4 73.2
8.1 0.70 0.43 il 10.3 0.4 32.9 32.9 36.6 60.8 65.1 77.1
Maximum Percentage
Difference between 33% 23% 16% 21% 15% 10% 17% 12% 9%

above Profiles.

* Acceleration rates, 4, are in km/h/s. The ratio 8, = fm“q is the position of maximum acceleration.

The ratio p= x /¢t is for acceleration from rest fo vg (acceleration time, t, = v¢/d, and acceleration

distonce, xg = Pvt, in meters if v¢ is in m/sh
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average acceleration rate such as 1.0 km/h/s would
he rarely used to accelerate to a high final speed
(90 km/h) in practice. Low fuel consumption for
@ = 1.0 km/h/s occurs because less time is spent at
speeds near 90 km/h where fuel consumption is high
due to the high aerodynamic drag component. How-
ever, this is only achieved with a high time penalty,
and is likely to have adverse effects in general traffic
terms. The optimal rates for accelerations to 30 and
60 km/h are close to observed values indicating that
most drivers’ acceleration behaviors are not far from
optimai,

The effect of acceleration profile can be gauged by
comparing the values of F. for the same v; and & in
Table VII (i.e. down the columns). The percentages at
the bottom of the table indicate that varying profiles
can result in differences in excess fuel consumption of
10-30%. It 1s seen that the profiles with the maximum
acceleration at the start use less fuel but this effect is
not as strong for hard accelerations {a = 5 km/h/s in
Table VII). This can be explained with the help of
Figures 3 to 5. For small values of m (e.g. m = 0.06 for
curve A), relatively high speeds (about 50 km/h) are
reached earlier in the profile and the vehicle will travel
at close to its optimal cruise speed for a greater part
of the acceleration (optimal cruise speed is the speed
which gives minimum fuel consumption per unit dis-
tance). For that part of the acceleration above the
optimal cruise speed, the acceleration rates are small
and more time is spent with speed close to the opti-
mal speed, and hence less fuel is used. The energy-
acceleration term of the fuel consumption model (a’v)
also indicates that more fuel will be used with high
acceleration rates at high speeds (toward the end of
acceleration) as seen for m = 8.1 (curve C) in Figure
5. It therefore appears that the best general strategy
during acceleration, given an acceleration time or av-
erage acceleration rate, is to accelerate hard at the
start and slowly after the optimal cruise speed is
reached. However, the constraints of a traffic stream
may not allow an individual driver to implement such
a strategy.

CONCLUSIONS

THE FOLLOWING conclusions are drawn from the
analyses of on-road acceleration profiles and alterna-
tive acceleration models for both speeding up and
slowing down cases:

{a) There are large variations between acceleration
profiles in real driving conditions.

{(b) The speed-time curve of a typical acceleration has
an S shape with the position and value of the
maximum acceleration depending on the cruise
speed.

(c) Sinusoidal and polynomial acceleration models
can be specified which yield an S-shaped speed
profile, satisfy the realistic conditions of zero
acceleration and zero jerk (rate of change of ac-
celeration) at the start and end of the acceleration,
and allow the position and value of maximum
acceleration to vary for a given average accelera-
tion rate.

{d) The polynomial and sinusoidal acceleration
models predict aceeleration distance and fuel con-
sumption better than the constant and linear-
decreasing acceleration models when acceleration
time is known.

(e) The polynomial acceleration model predicts
acceleration fuel consumption better than the
other models in the three driving locations, CBD.
other urban and nonurban, and for the three sets
of testing conditions: acceleration time and dis-
tance, t, and x, known; t, known, x, unknown;
and ¢,, x, unknown,

(f) Of the five models tested, the pelynomial accel-
eration model is the best overall for predicting
acceleration distance and fuel consumption. Sat-
isfactory results will be obtained from this model
only if the measured values of acceleration time
are known. However, the best results will be
achieved if both the acceleration time and dis-
tance are measured.

(g) When acceleration time, ¢, and distance, x,, are
not known, regression equations are available to
predict these values as functions of the initial and
final speeds, v; and v;.

(h) Acceleration fuel consumption is found to depend
on both the acceleration rate and the acceleration
profile.

(i) For a given acceleration profile (position of the
maximum acceleration fixed), there is an opti-
mum average acceleration rate which depends on
the final speed. The optimum acceleration rate
predicted by the polynomial model for the car
described in Appendix C for accelerating from
rest to 60 km/h is 2.2 km/h/s (¢./t, = 0.36
predicted).

(j) For a given acceleration rate, varying acceleration
profiles can result in differences in excess fuel
consumption of about 10 to 30%. These differ-
ences are larger for lower average acceleration
rates. Profiles with the maximum acceleration
occurring closer to the start of acceleration use
less fuel.

The following subjects are recommended for
further study:

(a) The results reported in this paper are for accel-
erations from rest {v; = 0), or for decelerations to



rest (v, = 0). Testing of alternative models could
be carried out for accelerations with non-zero
initial speed and decelerations with nonzero final
speed.

(b) The results given in this paper are for accelera-
tions in all traffic situations. It would be useful to
collect and analyze real-life acceleration and de-
celeration data in specific traffic control situa-
tions such as traffic signals, roundabouts, give-
way and stop signs.

(¢) A study of the acceleration profiles and rates of
the first vehicles to arrive at, and depart from, the
stop line of a signalized intersection approach in
comparison to the subsequent vehicles in queue
would be useful.

(d} Acceleration rates and profiles of different vehicle
types such as manual and automatic transmission,
light and heavy vehicles, etc., need to be studied.

{e) In microscopic (vehicle-by-vehicle) moedels of
traffic, car-following models have commonly been
used to generate speed-time traces of vehicles, e.g.
NETSIM!"% and MULTSIM."" In this type of
model, the first vehicle in a queue is assigned a
maximum acceleration value and the other vehi-
cles react to those in front according to a car-
following equation. It would be interesting to
compare the speed and acceleration profiles re-
sulting from various car-following models used in
microscopic traffic simulation models with real-
life profiles and with those given by the poly-
nomial model.

APPENDIX A: CONSTANT, LINEAR-DECREASING
AND SINUSOIDAL ACCELERATION MODELS

THE VARIABLES @ (average acceleration rate), a,, (max-
imum acceleration)}, # {time ratio), #,, {time ratio for
maximum acceleration) and v, (average speed during
acceleration) used for the models given in this appen-
dix are defined in Table 1.

Constant Acceleration Model

The constant acceleration model 1s the simplest
model and assumes that the average acceleration is
maintained throughout the acceleration (Fig. 10):

a(t)=d=(uf_vr)/tﬂ- (A'l)
The speed at time ¢ is given by:
U(t) =U1+(U;— U,‘)H. (A2)

The acceleration distance and the average speed are
therefore:

X, = 0.5{(v; + vty (A.3)
U, = x/t; = 0.5{v; + vy). {A.4)
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Fig. 10. Acceleration and speed profiles for the constant accel-
eration model when initial speed is zero.

Linear-Decreasing Acceleration Model

The linear-decreasing model (Fig. 11} assumes that
the maximum acceleration occurs at ¢t = 0 and that
the acceleration decreases steadily to zero as the speed
approaches the final speed, v;. The acceleration and
speed at time ¢ are given by:

a(t) =201 — 8)vr— v/t (A.5)
vit)=v,+(2-0)8(v;—v,). (A.6)

For this model, the maximum acceleration is 2@ (at ¢
= 0). The acceleration distance and the average speed
are:

x. = (U; + 20, 1(t./3) (A7)
v = {0 + 207)/3. (A.8)

From Equation A.4 and A.8, it can be shown that the
constant and linear-decreasing acceleration models
have constant values of p = /2 and %3, respectively, L.e.
the shape of the acceleration and speed profiles do not
change for different initial and final speeds.

Two-Term Sinusoidal Acceleration Model

The two-term sinuscidal model of acceleration
which satisfies the condition of zero acceleration at
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Fig. 11, Acceleration and speed profiles for the linear-decreasing
acceleration model when initial speed is zero.

the start and end of acceleration is given by:
a(t) = Ca,(sin = + B sin 2x#) (A.9)

where B is a parameter to be determined and C is a
constant which depends on B.

To ensure that the acceleration predicted by this
model is greater than zero for all ¢t between 0 and t,,
it is necessary to make the following restriction:

-4 = B = . {A.10)

The acceleration distance and the position of the
maximum acceleration is related to the parameter B
as follows:

B=[4(v,—v)/(oy—uvi)} -2 (A.11)

= to/ta= (1/m)cos ' [(—1 + (1 + 32B%)1/2)/8R).
(A12)

The restriction on B is therefore equivalent to the
restriction:

=8, = . (A.13)
The constant C is related to B as follows:
1/C = sin 8, + B sin 2xf,,. (A.14)

Expressions for the maximum acceleration, average
speed and the speed at time ¢ are given below:

= 05ra/C {A.15)
ve= v+ 0.5(1 + 0.5B)v; — vi) (A.16)

vt} = v+ 0.5(0, — v)[(1 + 0.5B)
(A.1T)

— (cos =@ + 0.5B cos 2x0)].

From Equation A.16, it is seen that the model gives a
variable value of p = 0.5 + 0.25B. From Equation A.10,
this means that the allowed range of s for this model
is 0.375 to 0.625.

Figures 12 and 13 show that the two-term sinusoidal
model produces a result which resembles the typical
acceleration profile observed on the road (Fig. 1) more
closely than the constant or linear-decreasing models.
However, it has several limitations:

(a} The position of the maximum acceleration (¢,./t.)
1s restricted to between ¥4 and %

(b} As t./t. approaches Y or %, the trajectory of
the acceleration curve is too flat for times near
Oort,.

(c) Except with the extreme values of t,/¢,, there is
jerk at the start and end of the acceleration.

To apply the two-term sinusoidal model given by
Equation A9, it is necessary to determine values of
parameters B, C and a,.. Using the measured or esti-
mated values of x, and t,, B can be calculated from
Equation A.11. And from Equation A.15, the value of
Ca,, = 1.57ta = 1.571{vy — v;)/t,. This method allows
the shape of the acceleration profile to vary for differ-
ent initial and final speeds.

Tr_
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Fig. 12. Comparison of the two-term and three-term sinusoidal
models where ¢,./t, = 0.4, vy = 81 km/h and t, = 27 5.
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Fig. 13. Comparison of the two-term and three-term sinusoidal
models where ¢./t, = 0.6, vy = 40 km/h and t, = 20 s.

Three-Term Sinusoidal Acceleration Model

The two-term sinusoidal model has the important
property that the acceleration starts off at zero and
tapers off to zero as the speed approaches v;. The
model does not, however, satisfy the practical con-
straint that there is no jerk at the start and end of the
acceleration (i.e. da/dt = Q0 at t = 0 and ¢t = t,). The
following three-term sinusocidal model satisfies this
constraint:

a(t) = Ra,,(0.5b — P cos =@

(A.18)
— 0.5 cos 2x8 + P cos 3x8)
v(t) = v; + Rt(am/x)(0.570
— P sin =8 — 0.25 sin 2x8 {A.19)

+ (P/3) sin 3xf)

where P is a parameter to be determined and R is a
constant which depends on P. Graphically this func-
tion has a similar form to the two-term model but for
the same position of maximum acceleration, the value
of the maximum is greater and the acceleration ap-
proaches zero more smoothly with the three-term
model (Figs. 12 and 13},

It is necessary to apply the following constraint so
that the acceleration, a(t), is greater than 0 for all ¢
between 0 and £,:

—0.25 = P = 0.25. {A.20)

Other important relationships for the three-term si-
nusoidal model are given below:

vy =mh, {A.21)
P = cos v/2(3 cos®y — 1} (A.22)
R=1{1-3cos®>y)/sin'y (A.23)
a. = 2a/R (A.24)
ve= v — (0 — v)(0.5 + 32P/97%).  (A.25)
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From Equation A.25, parameter P is also given as:
P = (977/32)(—0.5 + (v; — v,)/{(vy — v))).  (A.26)

From Equations A.2]1 and A.22, the position of the
maximum acceleration is:

8= {1/=)cos (1 — (1 + 48P V%) /12P) for P#0
=(.5 for P=0.
(A.27)

The restriction on P (Equation A.20) is therefore
equivalent to the following restriction:

0.392 = ¢, = 0.608. {A.28)

The range of possible values of #,, is even more restric-
tive than the range for the two-term sinusoidal model
{Equation A.13) and is a severe limitation to the three-
term model. From Equation A.25, it can be shown
that the three-term sinusoidal model has a variable
value of p = 0.5 — 0.3603P. From Equation A.20, this
means that the allowed range of p for this model is
0.41 to 0.59. To use Equation A.18, it is necessary to
determine the values of parameters P and Ra,.. Using
the measured or estimated values of x, and t,, P can
be calculated from Equation A.26 and the value of
Ra,, = 2a = 2(v; — v,)/t,.

APPENDIX B: METHODS OF EVALUATING

ACCELERATION MODELS
VARIOUS METHODS could be used to compare the
predicted acceleration profiles with those observed on
the road. For example, the maximum error between
data and model in predicted speeds could be used as a
goodness of fit measure. However, for the goodness of
fit measure to be used for evaluating models of accel-
eration profile to have a practical meaning and be
directly relevant to the problem at hand, the following
two measures were used in the analysis presented in
this paper:

{(a} distance traveled during acceleration (x,}, and
(b) fuel consumed during acceleration (F,).

Distance traveled during acceleration is the area
under the speed-time curve. The error in distance is
therefore equal to the sum (integral) of the error in
speeds over the acceleration period (¢, seconds):

Axg = Xgqp — Xao

fe (B.1)
=J; (vp(t) — va{t)) dt

where

Ax, is the error in predicted acceleration distance,
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X and x,, are the predicted and ohserved accelera-
tion distances, respectively, and

v, and v, are the predicted and observed speeds,
respectively.

In the analysis of data, the error in distance was
approximated by:
rlz
Ax, =Y (u,(8) ~ v,(8))/3.6 (B.1a)
=1

where the units of distance, time and speed are meters,
seconds and km/h, respectively, and the summation
is over intervals of 1 s.

Fuel consumed during acceleration can be predicted
from an instantaneous fuel consumption model which
gives fuel consumed at time ¢, f(t), as a function of
the speed, v(t), and acceleration, a{t). An energy-
related model of instantaneous fuel consumption de-
scribed by Biggs and Akcelik"® and BOWYER et al.!'”
has been used for this purpose. The model is summa-
rized in Appendix C. The error in fuel consumption is
calculated as the difference between total fuel con-
sumption values predicted using the observed and
modeled acceleration and speed profiles (as explained
below, a procedure equivalent to the use of excess
acceleration fuel consumption is employed to avoid
the influence of errors in distance prediction). There-
fore, for the particular fuel consumption model used
in the evaluation, the error in fuel consumption can
be thought of roughly as a weighted sum of errors in
speed and acceleration (v, v*, av, a®v) over the accel-
eration period.

There are several reasons for not using the meas-
ured fuel consumption to evalute the models of accel-
eration profile. First, fuel consumption is difficult to
measure accurately on-road over the small time inter-
vals in which accelerations occur (10-30 s). Even if
the fuel consumption values were known for the ob-
served acceleration, they would not be known for the
modeled acceleration profile. The energy-related
model has been found to predict fuel consumption
during accelerations adequately (Biggs and Akcelik'").
Fuel consumption estimated by the energy model for
the observed and modeled accelerations are directly
comparable. In addition, since they approximate the
actual fuel consumption without much of the random
variation associated with observed values, they would
provide a wvaluable guide to the real error in fuel
consumption associated with the acceleration model.

Another difficulty with using fuel consumption to
compare acceleration profiles is that the distance trav-
eled under various profiles will be different. This
problem can be overcome by using the observed dis-
tance as a base and subtracting or adding the fuel that
would have been consumed traveling the extra dis-

tance at final cruise speed, v;. More specifically, the
fuel consumption adjusted for distance is defined:

Fe;p = Fﬂp - f(‘Axn (BQ)
where

F.» is the predicted fuel consumption for the accel-
eration,

F., is the predicted fuel consumption adjusted to
observed acceleration distance,

f. is the fuel consumption per unit distance traveling
at speed vy, and

Ax, is the error in distance as given by Equation
B.1.

Thus, the error in acceleration fuel consumption, AF,,
is:

AF,=F,—F.,=F,—-F, —fAx, (B3

where F,, F,. and Ax, are as in Equations B.1 and
B.2, and F,, is the predicted fuel consumption under
the observed acceleration profile.

Rather than using the absolute errors, Ax,, AF,,
which increase with distance and fuel consumption,
the percentage errors, %Ax,, %AF, were used in the
evaluation of the alternative acceleration models.
These are given as:

%Ax, =100 Ax,/xq {B.4)
%AF,=100 AF,/F,, (B.5)

where Ax,, x.,, AF,, F,, are as in Equations B.1 and
B.3.

As specific measures, the mean percentage error
over many accelerations is a measure of the bias in
the model, and the standard deviation of percentage
errors gives an indication of the variation in model
performance over many accelerations. When modeling
a single acceleration, a better measure of the error in
estimated distance and fuel consumption is the stand-
ard percentage error (square root of the mean square
percentage error). The standard percentage error
(s%E) of the estimated acceleration distance is given

by:
N
2 (%Axuk)z/N (B.G)
k=1

V[mean (%Ax.)]2 + ISD (%Ax.))  (B.7)

S%E(xs)

where %Ax,,. is the value given by Equation B.4 for
the kth acceleration (k =1 to N) and N is the total
number of accelerations.

The s%E is analogous to the 8D of the percentage
error but the mean percentage error is replaced by



zero. The relationship between the $%E and the mean
and sp of the percent error is given by Equation B.7.

APPENDIX C: THE ENERGY MODEL FOR
ESTIMATING CAR FUEL CONSUMPTION

THE ENERGY-RELATED fuel consumption model de-
scribed below estimates instantaneous values of fuel
consumption from second-by-second speed and grade
information. The model is an extended and modified
version of the power model described by PoST et al.,!*”!
and is described in detail in Biggs and Akcelik® and
Bowyer et al.!"?! Basically, the model relates fuel con-
sumption during a small time increment, dt, to:

(a) the fuel to maintain engine operation,

(b) the energy consumed (work done} by the vehicle
engine while traveling an increment of distance,
dx, during this time period, and

(¢) the product of energy and acceleration during
periods of positive acceleration.

Part (c) allows for the inefficient use of fuel during
periods of high acceleration. Since energy is dE =
R+dx where R, is the total tractive force required to
drive the vehicle along distance dx, the fuel consumed
in the time increment, dt, is expressed as:

dF = adt + 8, Rrdx + (3,aR,dx),-0 for Ry>0
for R+=0
(C.1)

= adt

where

dF = increment of fuel consumed (ml) during travel
along distance dx (m) and in time dt (s),

a = constant idle fuel rate {ml/s), which applies
during all modes of driving (as an estimate of
fuel used to maintain engine operation),

B, = an efficiency parameter which relates fuel
consumed to the energy provided by the en-
gine, 1.e. fuel consumption per unit of energy
(ml/kJ),

#, = an efficiency parameter which relates fuel
consumed during positive acceleration to the
product of inertia energy and acceleration,
i.e. fuel consumption per unit of energy-
acceleration (ml/(kJ - m/s%)},

a = instantaneous acceleration {dv/dt} in m/s?
which has a negative value for slowing down,
and

Rr = total “tractive” force required to drive the
vehicle, which is the sum of drag force {(R),
inertia force (R;) and grade force (R;) in kN
(kilonewtons):

RT = R,r) + R; + R(,‘. (C2)
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The resistive forces can be expressed as:

Rn = b] + b2U2 (CB)
R;= Ma/1000 (C4)
R =9.81M(G/100)/1000 (C.5)

where

v = speed {dx/dt) in m/s,

(G = percent grade which has a negative value
for downhill grade,

M = vehicle mass in kg, including occupants and
any other load, and

b, by = the vehicle parameters related mainly to

rolling resistance and aerodynamic drag,
but each containing a component due to
drag associated with the engine. The pa-
rameters of the drag function (Equation
C.3) are derived using steady-speed fuel
consumption data. However, if data col-
lected during coast-down in neutral are
also available, a three-term function E;, =
by + bsv + byv? can be derived where b, by
and b, are related to roiling, engine and
aerodynamic drag, respectively.

The following parameter values derived for the Mel-
bourne University test car (4.1-L Ford Cortina sta-
tion-wagon with automatic transmission) were used
for the analyses reported in this paper:

M = 1680 kg

a = 0.666 ml/s

8 = 0.0717 ml/kJ

8. = 0.0344 ml/(kJ - m/s?
b = 0.527 kN

, = 0.000948 kN(m/s) %

When the engine drag was allowed for separately,
the three drag parameters were found to be b, = (.269,
b, = 0.0171 and b; = 0.0006872. However, the two-term
drag function was used for the analyses reported in
this paper.

Fuel consumption per unit time (mi/s) can be ex-
pressed as:

B.Ma’v
= = N _ >
f=dF/dt a+[3]Rw+( 1000 )‘Dﬂ for Ry => (0
= ¢ for Rr =0
(C.6)

where the total tractive force required is:

Ma ]
= Gl —— 81 x 107°MG. >
Ry =5 + bov* + 1000 + 9.81 X 10°M( (C.7)
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Note that in this form, the energy model becomes an
extended form of the power model since R = Pris
the total tractive power (kW) and Ma®v = aP,, where
P, is the inertia power.

Fuel consumption per unit distance (ml/m) can
similarly he expressed as;

dF fi « A.Ma*
dx I ( 1000 /., for Rr>0
=Z for Rr<0.
U
(C.8)

Fuel consumption per unit time for constant speed
travel along a level road (a = 0, G = 0) is obtained
from the above equations as:

fr.r =a+ ik + szg)U (C.9)

where ., is the constant speed fuel consumption rate
{ml/s).

For more detail and examples for the use of the
energy model of fuel consumption, see Bowyer et al.!'!
and Biggs and Akcelik."”
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