' Akcelik & Associates Pty Ltd

PO Box 1075G, Greythorn, Vic 3104 AUSTRALIA
‘ info@sidrasolutions.com
SIDRA SOLUTIONS® Management Systems Registered to 1ISO 9001

ABN 79 088 889 687

REPRINT

Traffic performance models for
unsignalised intersections and
fixed-time signals

R. AKCELIK and E. CHUNG

REFERENCE:

AKCELIK, R. and CHUNG, E. (1994). Traffic performance models for unsignalised
intersections and fixed-time signals. In: Proceedings of the Second International
Symposium on Highway Capacity, Sydney, 1994 (Edited by R. Akcelik). Australian
Road Research Board, Volume 1, pp 21-50.

NOTE:

This paper is related to the intersection analysis methodology used in the SIDRA
INTERSECTION software. Since the publication of this paper, many related aspects of the
traffic model have been further developed in later versions of SIDRA INTERSECTION.
Though some aspects of this paper may be outdated, this reprint is provided as a record of
important aspects of the SIDRA INTERSECTION software, and in order to promote software
assessment and further research.

© Akcelik and Associates Pty Ltd / www.sidrasolutions.com
PO Box 1075G, Greythorn Victoria 3104, Australia
Email: info@sidrasolutions.com



PREPRINT

Traffic performance models for unsignalised
intersections and fixed-time signals

by

RAHMI AKCELIK
Chief Research Scientist, Australian Road Research Board Ltd

and

EDWARD CHUNG
Research Assistant, Australian Road Research Board Ltd

Paper for 2nd International Symposium on Highway Capacity,
9-13 August 1994, Sydney, Australia

February 1994
Revised: May 1994




Traffic performance models for unsignalised
intersections and fixed-time signals

Paper for 2nd International Symposium on Highway Capacity,
9-13 August 1994, Sydney, Australia

Rahmi Akgelik,
Chief Research Scientist, Australian Road Research Board Ltd
and

Edward Chung
Research Assistant, Australian Road Research Board Ltd

ABSTRACT

New analytical models are presented for predicting various performance
statistics (delay, queue length, proportion queued, queue move-up rate and
stop rate) for traffic in approach lanes controlled by give-way and stop
signs and fixed-time signals. The models are also applicable to
roundabouts. An integrated modelling framework is employed for
consistency among different statistics and among models for different
intersection types. The models have the traditional two-term form used for
fixed-time signals, with additional calibration factors introduced for each
term of each model. The additional factors help to allow for the effects of
variations in arrival flow rates and cycle capacities. The models for
unsignalised intersections were developed by converting the block and
unblock periods in traditional gap acceptance modelling to effective red
and green periods by analogy to traffic signal operations. This enabled the
modelling of the average back of queue, proportion queued and queue
move-up rates in a manner consistent with models for signalised
intersections. Equations to predict the 90th, 95th and 98th percentile queue
lengths are also presented. Data generated by a modified version of the
microscopic simulation model MODELC were used for model calibration.
Models were derived using a bunched exponential model of arrival
headway distributions for all traffic streams.
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1. INTRODUCTION

This paper presents new analytical models of traffic performance (delay,
queue length, proportion queued, queue move-up rate and stop rate) for
approach lanes controlled by give-way (yield) and stop signs and fixed-time
signals. The models are also applicable to roundabouts. The performance
models are based on the theoretical framework previously developed for
modelling delay, queue length and stop rate at fixed-time signals in an
integrated manner (Akcgelik 1980, 1981, 1988, 1990a). This framework is
employed for consistency in modelling different statistics and modelling
different intersection types.

The modelling framework presented here makes use of the work of
many researchers who contributed to the modelling of signalised
intersection delays previously, but is unique in predicting queue length,
proportion queued, queue move-up rate and stop rate in a way integrated
with the modelling of delay. Overflow queue formulation is central to the
modelling of delay, queue length and queue move-up rate. This method
provides a convenient link between steady-state and time-dependent
formulations (Akgelik 1980), thus allowing for easy model calibration
using field or simulation data. The models presented here also differ from
most traditional models in the use of capacity per cycle as an additional
parameter in performance prediction.

The traditional two-term form is used with additional calibration
factors introduced for each term of each model. The additional factors
help to allow for the effects of variations in arrival flow rates and cycle
capacities. They also help to achieve improved accuracy in predicting
relative values of a given statistic for low and high degrees of saturation.
Although results for fixed-time (pretimed) isolated signals are given in
this paper, the model structure allows for the development of similar

models for vehicle-actuated signals and closely-spaced intersections
(Akgelik 1994a,c; Akcelik and Rouphail 1994).

The models for unsignalised intersections represent a new
development to fill the gap in modelling queue length, proportion queued
and queue move-up rates in the context of gap acceptance modelling. The
traditional gap-acceptance and queueing theory models do not give
sufficient information for intersection design purposes since they predict
the average cycle-based queue length rather than the average back of
queue, and models for predicting queue move-up and stop rates do not
exist other than recent work by Troutbeck (1993).

The commonly-used average cycle-based queue length incorporates
all queue states including zero queues. The back of queue is a more useful
statistic since it is relevant to the design of appropriate queueing space
(e.g. for short lane design). The back of queue is also used for the
prediction of such statistics as the saturated portion of the green period
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and for modelling short lane capacities. In addition to the average values
of the back of queue, this paper presents equations to predict the 90th, 95th
and 98th percentile queue lengths.

The models for unsignalised intersections were derived by extending
the traditional gap acceptance modelling by treating block and unblock
periods in a priority (major) stream as red and green periods in a way
similar to the modelling of signal-controlled traffic streams (Akcelik
1994b). This enabled the modelling of the average back of queue,
proportion queued and queue move-up rate for the entry (minor) stream in
a manner consistent with models for traffic signals. This presents a
methodological advantage in that the same conceptual framework is
employed in models for different types of intersection.

The performance models presented in this paper were developed
using the bunched exponential model of arrival headway distribution
which is more realistic than the commonly used simple exponential and
shifted exponential models (Akcelik and Chung 1994). The models given
here are based on the use of the bunched exponential model for capacity
and performance prediction for all types of intersection. In modelling
capacity of entry streams at unsignalised intersections, the headway
distribution of total traffic demand in all lanes of the major stream(s) is
adopted with different values of minimum headway and bunching
parameters for single-lane and multi-lane cases. For performance
modelling, a lane-by-lane method is adopted, and therefore, arrival
headway distribution in a single lane of the approach road is considered.

The calibration of performance models was carried out using data
generated by the microscopic simulation model MODELC (Chung, Young
and Akgelik 1992a,b). MODELC was modified to incorporate the calibrated
arrival headway distribution model and generate data required for the
calibration of the new performance models. The models for unsignalised
intersections were derived by simulating a single uninterrupted opposing
(major) stream. As such, they are applicable to all basic gap acceptance
situations including roundabouts. Of course, different sets of gap
acceptance parameters are used for roundabout and sign-control cases.

Originally a roundabout simulation model, MODELC was extended to
simulate fixed-time signal control conditions in a simple way making use
of the analogy between gap acceptance and signal operations. The models
for fixed-time signal operations represent a refinement of the current
models to achieve improvements related to a more flexible model
structure, the use of the bunched exponential headway distribution model,
the need for performance models for lane-by-lane application (earlier
models were calibrated for lane groups), and the need for information on
the 90th, 95th and 98th percentile queue lengths for design purposes. The
comparison of results from MODELC with known models for traffic signal
operations helped to validate various simulation algorithms.

Before presenting the new performance formulae, the traffic signal
analogy for gap acceptance processes is explained.
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2. UNSIGNALISED INTERSECTION ANALYSIS
BY SIGNAL OPERATIONS ANALOGY

A method for treating the traditional gap acceptance modelling used for
unsignalised intersections by analogy to traffic signal operations was
conceived by Akcgelik (1991) and is discussed in more detail in
Akgelik (1994b). The underlying assumptions are shown in Figure 1
where an entry (minor) stream gives way to an uninterrupted major
(priority) stream. The method derives equivalent average red, green and
cycle times (r, g, c¢) for use in capacity and performance models
considering average durations of block and unblock periods (tp, ty) in the
major (priority) stream as used in traditional gap acceptance modelling
(Tanner 1962, 1967; Troutbeck 1986, 1988, 1989, 1990, 1991a, 1993; Akcelik
and Troutbeck 1991).

The basic formulae for unsignalised intersection modelling,
including the capacity and minimum delay formulae, are expressed by
Equations (1) to (8). All capacity and delay calculations are carried out for
individual lanes of entry (minor) movements, but traffic in all lanes of the
major (conflicting) movement is treated together as one stream. When
there are several conflicting (higher priority) streams, they are combined
together and treated as one stream.

major stream vehicles hsa
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Fig. 1 - Signal operations analogy for gap acceptance modelling
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where

ty,t, = average durations of the block and unblock periods in the major
traffic stream (sec);

¢ = equivalent average cycle time corresponding to the block and
unblock periods in the major traffic stream (¢ = r + g) (sec);

r, g = equivalent average red and green times corresponding to the
block and unblock periods in the major traffic stream (sec);

[ = equivalent lost time that corresponds to the unused portion of the
unblock period (sec);

u,y = equivalent green time ratio (green time/cycle time) and flow ratio
(arrival flow/saturation flow) for the entry stream,;

sg = equivalent capacity per cycle for the entry stream, i.e. the

maximum number of vehicles that can discharge during the
average unblock period (veh), where s is in veh/s;

S = saturation flow (s = 3600/B) (veh/h);

o, B = mean critical gap and follow-up (saturation) headway for the
entry stream (sec);

Q = capacity of the entry stream (veh/h);

Qg = capacity estimate using the gap-acceptance method (veh/h);

Qm = minimum capacity (veh/h);

n,, = minimum number of entry stream vehicles that can depart under
heavy major stream flow conditions (veh/min);

d,, = minimum delay experienced by the entry stream vehicles (sec)
(see Cowan 1984, 1987; Troutbeck 1986, 1989, 1991a, 1993);

A = a parameter in the exponential arrival headway distribution
model;

(0] = proportion of free (unbunched) vehicles in the traffic stream (¢,

for the major stream, 9, for the entry stream);

A = minimum arrival (intra-bunch) headway in the traffic stream
(sec) (A for the major stream, Ag for the entry stream);

b = a bunching factor in the formula for estimating proportion of free
(unbunched) vehicles in the traffic stream;

q, = arrival flow of the entry lane (veh/h);

q,, = total arrival flow of the major stream (veh/s or veh/h; expressed
in pcw/s or pcw/h if adjusted for heavy vehicle effects using the
passenger car equivalents method - see the Concluding
Remarks.

When there are several conflicting (higher priority) streams,
the total major stream flow (q, ) is calculated as the sum of all conflicting

stream flows and parameters Ap, ¢y are determined accordingly.
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Equations (1) to (6) should be used for >0 (forq, =0,r=0,g=c,u= 1.0,

Qg = 3600/8, dyy, = 0, and the gap-acceptance based delay, queue length, etc.
will all be zero.

Equations (1) to (8) are based on a bunched exponential distribution
model of arrival headways, known as Model M3 (Cowan 1975, Troutbeck
1986,1989,1991a). A detailed discussion of this model and the results of its
calibration using real-life data for single-lane traffic streams and
simulation data for multi-lane streams are given in Akgelik and Chung
(1994). The bunched exponential distribution is relatively new and its use
is less common than the simple negative exponential (Model M1) and
shifted negative exponential distributions (Model M2) which are used in
the traffic analysis literature as models of random arrivals. This paper
adopts the more realistic M3 model for all analyses to replace the M1 and
M2 models.

Important parameters which describe Model M3 are A and ¢. The
M3 model with ¢ estimated from Equation (8) will be referred to as Model
M3A. In addition to the use of an estimate of ¢ from Equation (8), Model

M3 can be used with a specified (measured) value of ¢. The parameters for
the M3A model calibrated for uninterrupted flow conditions, and for
roundabout circulating streams are summarised in Table 1. Note that
Models M1 and M2 can be derived as special cases of the M3 model
through simplifying assumptions about the bunching characteristics of
the arrival stream: both models M1 and M2 assume no bunching for all
levels of arrival flows (¢ = 1), and Model M1 also assumes A = 0, therefore A
equals the total flow. Also note that the shifted negative exponential model
(M2) is normally used for single-lane traffic only.

An example of equivalent red, green and cycle times is given in
Figure 2 for the case of a simple gap-acceptance situation with a single-
lane major stream (Ay, = 1.5 from Table 1) with o = 4 s,B=2s.

Table 1

Summary of parameter values for the bunched exponential
arrival headway distribution model M3A

Uninterrupted Roundabout
Total number traffic streams circulating streams
of lanes A b 0 A b 0
1 15 06 e 09¢ 2 25 e 509
2 05 05 e 0259 1 25 e25¢
> 2 05 08 e044q Same as the 2-lane case
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Fig. 2 - The equivalent red, green and cycle times as a function of the
major stream flow rate for a simple gap acceptance example

3. PERFORMANCE MODELS

The traditional two-term model structure for delays at traffic signals is
adopted for unsignalised intersection modelling through the use of traffic
signal analogy for gap acceptance processes discussed in the previous
section and by introducing a separate calibration factor for each term of
each performance statistic (Akgelik 1994c¢). In the traditional delay
models, the first terms represent a uniform-flow model only, and any
variational effects are included in the second term (the overflow term). In
the new models, the first term calibration factors help to predict the effect
of variations in queue clearance times under low to medium flow
conditions (when there are no overflow queues), and any additional delays,
etc. due to overflow queues are included in the second (overflow) terms.

Overflow queues and the associated delays and stops (queue move-
ups) result from insufficient cycle capacity due to (i) temporary cycle
oversaturation due to the random variations in arrival flows (and in
capacities in the case of gap acceptance processes), and (ii) permanent
oversaturation when the average flow rate exceeds the overall capacity
during the specified flow period.

Separate calibration of the first and second terms of each
performance model helps to obtain better predictions of the proportion
queued, saturated portion of green period, and the number of major stops
and queue move-ups (multiple stops in the queue). Separate information
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about major stops and queue move-ups 1s useful for more accurate
prediction of fuel consumption, pollutant emissions, operating cost and
similar statistics.

This paper uses the term proportion queued rather than the term
proportion stopped. This helps to distinguish between geometric stops
(associated with delays in negotiating the intersection with no queueing
effects) and the stops due to traffic control (red signal, or time until an
acceptable gap occurs in the major stream). The latter corresponds to the
delays predicted by the performance models given in this paper, and is
better expressed by the term queueing. For example, all vehicles have to
stop at a stop sign (geometric stops), but only a proportion of these stops are
due to the gap acceptance process (queueing stops).

Similarly, a distinction between queueing delay and stopped delay is
observed. The former includes the stopped delay as well as the delays
associated with queue move-ups. However, the queueing delay can be so
small that it corresponds to a slow-down only. The delays given in this
paper are overall average delays including deceleration and acceleration
delays for major stops, but excluding any geometric delays. The HCM
method (TRB 1985) uses the average stopped (or queueing) delay calculated
as d/1.3 where d is the average overall delay (it is not clear if the factor 1.3
1s meant to apply to stopped delay or queueing delay). However, the ratio of
the stopped (or queueing) delay to the overall delay is expected to decrease
with increased queueing delay. This ratio would also depend on approach
and exit speeds since deceleration and acceleration delays depend on the
initial and final speeds involved in a stop-start cycle.

The basic two-term models for average delay, average back of queue
and effective stop rate can be expressed as the following interrelated set of
equations:

N,
d =di+ds = fardu+fardo = fardu+ faz Q" (9)
Np = Np1+Nb2 = fh1 Ny + firg No (10)
N,
h = hi+hy = farhu+fhgho = faha+ fho oo (11)
where
d = average delay in seconds per vehicle,
Np = average back of queue (vehicles),
h = effective stop rate,

dy, Nbu, hy = uniform flow components,

do, No, hy = overflow components,

fd1, fb1, th1 = first-term calibration factors,
fd2, fbo, the = second-term calibration factors,

No = average overflow queue,
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Q = approach lane capacity in vehicles per second (see
Equations 5 and 17), and

qc = average number of arrivals per cycle (q = average arrival
flow rate in vehicles per second and average cycle time in
seconds).

The effective stop rate is obtained by expressing the major stops (first

term) and the queue move-ups (second term) in equivalent stop values
(ESVs) using adjustment factors eps and eqm, respectively:

h = ems Pq + €qm hqm (11a)
where
ems = ESV factor for major stops (corresponding to h as the effective
stop rate for major stops: hy = fh1 hy = ems pg).
eqm = ESV factor for queue move-ups (corresponding to hg as the
effective stop rate for queue move-ups: hg = fho hg = egm hqm),
Pq = proportion queued (corresponding to major stops) given by
pq = fpqhu subject to pg < 1.0 (12)
hqm = queue move-up rate (corresponding to multiple stops in queue
before clearing the approach lane) given by
hqm = fqm hy = fqm (No/qc) (13)

In the above models delay, queue length, stop rate and queue move-up
rate statistics represent average values for all vehicles queued and
unqueued. The relationships between effective stop rate, proportion

queued and queue move-up rate will be further discussed later in this
section.

Non-Overflow Queue Terms

The first terms of Equations (9) to (11), namely dj, Np1 and hy, represent
the performance of traffic in the approach lane under low to medium flow
conditions since the overflow term is zero or negligible in those conditions.
The corresponding calibration factors fqi, fp1, fh1 (also fq in Equation 12)
are used to allow for the effect of variations from uniform-flow conditions.
These variations depend on (i) arrival characteristics: uniform or
platooned arrivals considering isolated and closely-spaced/coordinated
intersections; and (ii) service characteristics: constant green and red
times for fixed-time signals, or variable green and red times for actuated
signals (Akgelik 1994a,c) and unsignalised intersections (by signal
operations analogy as discussed in Section 2). The calibration factors
given in this paper apply to isolated intersection conditions (i.e. without
any platooned arrivals or signal coordination effects).

The uniform-flow components (dy, Npu, hy) are derived assuming
that the number of vehicles which arrive during each signal cycle is fixed
and equivalent to the average arrivals per cycle (qc), and that arrivals are



10 Akgelik & Chung

distributed wuniformly throughout the signal cycle at the average
flow rate (q). These are expressed as follows:

B 05r(1-u)

dy 1-y forx <1.0 (14)
= 05r forx>1.0
Nby = f‘f—y forx<1.0 (15)
=qc forx > 1.0
hy, = i“u forx <1.0 (16)
-y
= 1.0 forx > 1.0

where

r, g, ¢ = effective red, green and cycle time in seconds (for unsignalised
intersections, these are estimated using the equations given in
Section 2),

u = green time ratio (ratio of effective green time to cycle time):

u = gl (17a)

y = flow ratio (ratio of arrival flow rate to saturation flow rate):

y = gfs (17b)

X = degree of saturation (ratio of arrival flow rate to capacity):

X = q/Q = qe/sg (17¢)

Q = capacity under the specified flow conditions in vehicles per hour
or per second:

Q = sglc (17d)

q = arrival (demand) flow rate during the specified flow period in
vehicles per hour (or per second),

qc = average number of arrivals per cycle (vehicles),

S = saturation (queue discharge) flow rate in vehicles per hour or
per second (for unsignalised intersections, s = 3600/B is used
where B is the follow-up headway in seconds and s is in vehicles
per hour), and

sg = capacity per cycle (vehicles),

For oversaturated conditions (x > 1), the values of fyy, i1 and fi, at x=1
(fa1(x=1), fb1(x=1) and fh1(x=1)) are used so that the first terms of di, Np1, hy
models are constant for x > 1.

For minimum flow conditions, the queue length is approximately
zero, and the minimum delay (dp,) is given by Equation (14) with y = 0,
therefore:
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dyy =05r(1-uw (18a)

Similarly, the minimum proportion queued (pqm) is obtained by putting
y = 0 in Equation (16):

Equation (14) is commonly used as the first term of most traditional
delay models for isolated fixed-time signals (Webster 1958; Webster and
Cobbe 1966; Miller 1968; Akcelik 1981; Teply 1984; TRB 1985). For
signalised intersections, the traffic movements which receive two green
periods per cycle (e.g. protected and permissive turns), more complex
forms of Equations (14) to (16) are needed. Most existing delay models
apply Equation (14) by combining the two green periods as a single period
with an equivalent capacity. However, this method is not sufficiently
accurate, particularly in the case of non-consecutive green periods.
SIDRA (Akcelik 1990a, Akcelik and Besley 1992) uses an extended model
to estimate dy, Npy and hy for the case of two green periods, allowing for
different conditions of residual queues between the two green periods. The
details of this model are yet to be published.

For closely-spaced signalised intersections (see Ak¢elik and Rouphail
1994), platooned arrivals cause a variation from uniform flow conditions
because arrivals occur at different rates during different intervals of the
signal cycle (regularly in the case of coordinated signalised intersections).
The US Highway Capacity Manual (TRB 1985) uses progression factors as
a simple method of modelling the effects of platooned arrivals. Further
research is being carried out on this subject.

Overflow Queue Terms

From Equations (9) to (11), the second terms of the delay, queue length and
stop rate models are seen to be commonly expressed as a function the
average overflow queue (Ny). The following steady-state expression for
average overflow queue was developed by Akcelik (1980, 1988, 1990a,b) by
generalising an expression he originally used as a simple approximation
to Miller's (1968) expression for delay at signalised intersections:

k. -
Ny =% for x > x, (19)

=0 otherwise

where k, (used as k in previous publications) is a parameter that
determines the steepness of the overflow queue function, and x, is the
degree of saturation below which the average overflow queue is
approximately zero.

Equation (19) can be considered to form the basis of various delay
equations used in the literature for fixed-time traffic signal operations as
discussed previously (Akcelik 1988, 1990a,b). This formula has recently
been adopted by Tarko and Rouphail (1994) as "a distribution-free model for
estimating random queues in signalised networks".



12 Akgelik & Chung

Equation (19) as a steady-state expression is based on the assumption
that arrival demand conditions last indefinitely. It is valid only for
degrees of saturation up to about 0.95. A time-dependent function
corresponding to Equation (19) can be derived using the well-known
coordinate transformation technique (Akcelik 1980). This function is
based on the assumption that arrival demand conditions last for a finite
period of time (Ty). Derived on this basis, the time-dependent function can
be used for oversaturated conditions. Using the time-dependent form of
Equation (19) in Equations (9), (10) and (13), the following time-dependent
functions for the overflow terms of average delay and back of queue, as
well as the queue move-up rate are obtained:

0 8ky (x—x,)
do = 900T¢ [ (z+\/z R ] forx > x, (20)
=0 otherwise
8kb (X—Xo)
N2 = 0.25QT¢ [ (z + 2+ ] for x> x, (21)
=0 otherwise
0.25 QTy 9 8kqm (x—x%o)
hqm = *——qc [(z+‘\/z + QT; ] forx > x, (22)
=0 otherwise

where z = x -1, Tr = flow (analysis) period in hours, Q = capacity in veh/h,
QT = throughput (maximum number of vehicles that can be discharged
during the flow period), qc = number of arrivals per cycle (q is the arrival
flow rate in veh/s, ¢ in seconds), and the second-term parameters are
defined as: kg =142 k,, ky, = fp2 k, and kqm = fgm k, where fg2, fp2 and fqm
are as used in Equations (9), (10) and (13).

The duration of the flow period affects the estimates of performance

statistics significantly. Larger delays, queue lengths, and stop rates will
result from longer flow periods for a given demand level. T¢=0.25 h is

built into the HCM delay formula (TRB 1985) whereas the models given
here allow Tf to be variable.

Calibration Method

Using the simulation data generated by ModelC, model parameters fqi,
fb1, ems, fpg> Xo, ko, fa2, fho and fqm were determined using the following
calibration method:

(a) Calibrate the steady-state expression for the average overflow queue
N, (Equation 19) by determining k, and x, parameters using overflow

queue data for undersaturated flow conditions (x < 0.95). Determine
Xo as the degree of saturation below which N, is negligible (N, < 0.05
vehicles).
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(b) Determine the first term calibration factors (fq1, b1, ems, fpq) using
data representing the cases where N, is negligible (x < x, or Ny < 0.05)
and therefore the second term is zero.

(c) Determine the second term calibration factors for delay and queue
length (f42 and fy2 in Equations 9 and 10) using the overflow data
calculated as the total value of delay or queue length less the value of
the calibrated first term.

(d) Determine the calibration factor for queue move-up rate (f;;,) using
the move-up rate data (hgm) and hg = Noy/qc calculated from
Equation (13).

(e) Calculate composite parameters fhi = ens fpq for the first term of the
effective stop rate formula (Equation 11), and k4 = fg2 k, k;, = fh2 k, and
kqm = fgm k, for the time dependent functions for second terms of

delay, queue length and queue move-up rate (Equations 20 to 22).

Calibration Results

Calibration results are given in Equations (23) to (26) for unsignalised
intersections and Equations (27) to (30) for fixed-time signals. Graphs
showing simulated vs estimated average overflow queue length (N ),
average delay (d), average back of queue (Np), proportion queued (pq) and
queue move-up rate (hqm) for unsignalised and signalised intersections

are shown in Figures 3 to 7. The comparisons are based on steady-state
model predictions.

For a simple gap-acceptance case with a single-lane major stream
(Am = 1.5, 0 =4 s, f = 2 5), the average delay (d) and proportion queued (pq)
as a function of the entry lane degree of saturation (x) are shown in
Figures 8 and 9 for major stream flow rates of q, = 360, 720 and 1080 veh/h

(to represent low, medium and high flow levels). Both the major stream

and the entry stream are considered to consist of cars only. Figures 10 and
11 show the average back of queue (Np) and queue move-up rate (hqm) as a

function of the major stream flow rate (q,,) for entry flow rates of q, = 300,
600 and 900 veh/h. The time-dependent forms of the delay, average back of

queue and queue move-up rate models are used for graphs given in
Figures 8, 10 and 11 with flow period duration Tr= 0.5 h.
Unsignalised intersections

First-term parameters

2 dp (1 + 0.3 y0-20)

fa1 = r(d—u subject to fg1 > 1.0 (23a)
fi1 = 1208 subject to fp1 > 1.0 (23b)
foq = 0.75 @e (sg)0-40 subject to fpq > 1.0 (24a)
ems = 1.65(sg)-0:40 y0.10 subject to epms < 1.0 (24b)
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Second-term parameters

Xo = 0.14 (sg)0-55 subject to x, <0.95 (25a)
ko = 0.3 0, (sg)110 (d,Q) (25b)
kg = 0.17 g, (sg)140 y-040 (4_q) (26a)
k, = 045, (sg)l70 y040(q_ Q) (26b)
kqm = 1.1, (sg)1-10 y0.50 (4, Q) (26¢)

where @¢ is the proportion of unbunched traffic in the entry lane, sg is the
capacity per cycle (vehicles), y is the flow ratio, dy is the minimum delay
(in seconds), Q is the entry lane capacity (in vehicles per second), and r, u
are the effective red time and green time ratio (see Section 2).

Fixed-time signals

First-term parameters

far = 1+0.1 ¢ (sg)025 y0.10 (27a)
frr = 1+01¢e(sg)010y (27b)
fpq = 1+0.004 @e (sg)1-25 y0.25 (28a)
ems = 1.04 (sg)—0.07 y0.03 subject to epys < 1.0 (28b)

Second-term parameters

Xo = 0.4 (sg)0.20 subject to x, < 0.95 (29a)
ko = 0.55 (29)
k; = 055 (30a)
Kqm = 0.55+0.22 y030 (30¢)

where @, is the proportion of unbunched traffic in the entry lane, sg is the
capacity per cycle (veh), and y is the flow ratio.

It is seen that capacity per cycle, flow ratio and proportion of unbunched
traffic in the entry lane are the parameters that appear as variational
factors for both low to medium flow conditions (in the first term) and high
flow conditions (in the second term). Capacity per cycle was used in
earlier Australian models for overflow queue at fixed-time signals (Miller
1968; Akcelik 1980, 1981, 1988, 1990a,b). For unsignalised intersections,
dmQ appears as an important factor as in previous models (Troutbeck
1989; Akgelik and Troutbeck 1991) . The form of the first-term delay factor
(fa1) for unsignalised intersections is a result of the use of minimum delay
parameter in the formulation of delay in line with current models
(Troutbeck 1989; Ak¢elik and Troutbeck 1991) .
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Fig. 3 - Comparison of simulated and estimated values of average
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Fig. 9 - Proportion queued as a function of the entry lane degree of
saturation for three levels of major stream arrival flow rate
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Fig. 11 - Queue move-up rate as a function of the major stream flow rate
for various entry flow rates

Queue Length

The average back of queue (N}) represents the maximum extent of
queue in an average cycle. The first term (Np1) is useful for the prediction
of such statistics as the saturated portion of the green period and for
modelling short lane capacities. The prediction of the back of queue is
required for the design of appropriate queueing space (e.g. for short lane
design). The traditional gap-acceptance and queueing theory models do
not give sufficient information for intersection design purposes since they
predict the cycle-average queue (N¢). This is the average queue length

considering all instances during the cycle including the zero-queue states.
The commonly-used formula to calculate the cycle-average queue (N¢) is:

N. =dq, (31)
where d is the average delay from Equation (9) and q, is the average

arrival flow rate for the entry stream. Thus, the cycle-average queue is
equivalent to the total delay, or delay rate (strictly speaking, this
relationship applies to undersaturated conditions, x < 1, only).

The 90th, 95th and 98th percentile values of the back of queue (Npp)
and the cycle-average queue (N¢p9) can be expressed as a function of the
average value (Np or No):

Nbp% = fopa Np (32a)
Nepw = fepawn Ne (32b)

where fhpg and fcpq are the factors for pth percentile queue. The
calibration results for percentile queue length prediction are given below.
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Unsignalised intersections

fioo% = 1.9 +0.7 e~ Nb/8 (33a)
fhoss = 2.5+ 0.7 e_N'D/8 (33b)
fooss = 3.0+0.7 e b8 (33¢)
feo0 =2.0+0.6 e Ne/8 (34a)
foo5, = 2.5+ 0.7 e N/8 (34b)
feoss =3.2+ 1.0 e N2 (34c)
Fixed-time signals
fioo% = 1.3 +0.5e Nb/13 (35a)
fooss =1.4 +0.9 e Nb/12 (35b)
fioss =15+ 1.3e N1l (35¢)
fo0% =1.7+1.3 e Ne/3 (368)
foosm = 2.1+ 2.4 e Ne/2 (36)
fooss =2.3+4.0 e Ne/2 (368)

Graphs showing simulated vs estimated 90th, 95th and 98th
percentile values of back of queue (Nb90%, Nbosa, Npega,) for unsignalised

and signalised intersections are shown in F igures 12 to 14.

For a simple gap-acceptance case with a single-lane major stream
(Am=15,00=4s,B =25s), the average, 90th, 95th and 98th percentile back
of queue values as a function of the entry lane degree of saturation (x) for
major stream flow rate of qp = 720 veh/h are shown in Figure 15. These

graphs are based on the time-dependent form of the model for the average
back of queue (flow period duration T¢= 0.5 h).

Effective Stop Rate

The first terms of the equations for the average back of queue and effective
stop rate (Equations 10 and 11) correspond to major stops, whereas the
second terms of these equations relate to queue move-ups. The model for
the proportion queued (Equation 12) is related to major stops only.
The major stops include some partial stops, i.e. slow-downs corresponding
to small delays at the back of the queue, or slow-downs corresponding to
small delays generally. For proportion queued, each major stop is counted
as one stop irrespective of the corresponding delay value (i.e. even if it is &
very small delay). The effects of partial stops can be taken into account in

calculating effective stop rates for major stops by expressing the first term
of the effective stop rate model (hy) in terms of equivalent stop values

(ESV). In the simulation model, this was achieved by converting each
slow-down to an equivalent full stop value (less than one). As an
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approximate method, the ratio of deceleration-acceleration delays for a
partial stop and full stop was used for deriving an ESV factor for major
stops (ems). Thus, the calibration factor f,,; allows for partial stop effects

as well as any variational effects (see Equations 11 and 11a):
fh1 = emsfpq subject to fr; > 1.0 (37a)

The second term of the effective stop rate model corresponds to queue
move-ups, or multiple stops in queue. The queue move-up rate, hqm

(average number of queue move-ups per vehicle) is given by Equation (13)
where the calibration factor is fy;,. To convert the queue move-up rate to
an effective stop rate, an ESV factor for queue move-ups (eqm) is used, and
ho is calculated from:

This method is appropriate considering both steady-state (Equation 11a)
and time-dependent (Equation 22) formulations.

To calculate eqm, the ratio of acceleration-deceleration delays for a
queue move-up manoeuvre (accelerate to a queue move-up speed vqm and

decelerate to zero speed) and a full acceleration-deceleration cycle to the
approach cruise speed (accelerate to vy and decelerate to zero speed) can

be used. Although the use of full acceleration and deceleration distance
and time models are preferred for this purpose (as used in SIDRA), the
following approximate formula is useful for quick calculations:

€am = 70 33 vae 0.02 Vool (38a)

The speed involved in queue move-up manoeuvres (vqm) is less than
the approach cruise speed (vac), especially in the case of unsignalised
intersections. The queue move-up speed can be estimated from:

Vgm = 3.88 (Ljsg)0b subject to vgm S Vg (38b)

where L is the average queue space per vehicle (m/veh) and sg is the cycle
capacity (veh). This formula is based on the assumption that, when sg
vehicles depart in a saturated cycle (queue move-ups are relevant to
saturated cycles), all following vehicles in the queue move up (accelerate to
Vqm and decelerate to zero speed) within a distance equivalent to (Lj sg).
For example, for the case when Lj = 6.6 m/veh and va. = 60 km/h,
eqm = 0.31 (sg)0-5 — 0.06 (sg)0-75 (subject to eqm < 1.0) is obtained.

Note that the effective stop rate in ESVs (Equation 11) calculated
explicitly as described above is an improvement over the earlier method for
fixed-time signals which used a constant factor of eys = eqm = 0.9 (Akgelik
1981). Explicit calculation is particularly needed for unsignalised
intersection operations where sg, therefore vqm values are low and the
queue-move-up rates (hgm) are high.

Graphs showing simulated vs estimated effective stop rates for major
stops (h3) for unsignalised and signalised intersections are shown in

Figure 16.
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4. CONCLUDING REMARKS

The analytical models presented in this paper provide a consistent
modelling framework for the comparison of different types of
intersections. The modelling of unsignalised intersections by analogy to
traffic signal operations enabled the modelling of the average back of
queue and effective stop rate (including major stops and queue move-ups)
In a manner consistent with models for signalised intersections. The
models have been structured in a form appropriate for developing
performance models for vehicle-actuated signals.

Equations to predict the 90th, 95th and 98th percentile queue lengths
will provide valuable information to practitioners for the design of
queueing spaces. Effective stop rates predicted in equivalent stop values
(ESVs) can be used in simple methods for estimating fuel consumption,
pollutant emissions, operating cost and similar statistics (e.g. using
excess fuel consumption rate per major stop). Separate prediction of
major stops and queue move-up rates is useful for more accurate
estimation of such statistics (e.g. using the four-mode elemental model in

SIDRA).
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The use of capacity per cycle as a parameter in the formulation of
overflow terms provides sensitivity to the relative characteristics of major
and minor movements. This may have an important impact on signal
timing optimisation when there are marked differences between major
and minor movement characteristics. Through the use of the bunched
exponential model of arrival headways for all traffic streams, the
performance models now take into account the effect of bunching in
approach (entry) flows as well as major (opposing or circulating) flows.

The effects of heavy vehicles in the major stream and the entry
stream can be taken into account either by adjusting gap acceptance
parameters or using passenger car equivalents (Troutbeck 1991b). The use
of passenger car equivalents to convert major stream arrival flow rates
and entry stream capacities as used in the SIDRA software package
(Akcelik 1990a; Akcelik and Besley 1992) is described in Akgelik (1991).
Further research is recommended on the effects of heavy vehicles on
arrival headway distributions and gap acceptance processes.

The capacity model for unsignalised intersections given in this paper
differs from those published previously. Various forms of the new model
based on different assumptions about arrival headway distributions were
compared with more traditional models (Akgelik 1994b). It was found that
(1) there is little difference between various models for low major stream
flows, (ii) the differences among models which use the same arrival
headway distribution are negligible, and (iii) the impact of the assumption
about the arrival headway distribution is significant at high major stream
flow levels.

The capacity model given in this paper for unsignalised intersections
is relevant to a basic gap-acceptance situation where an entry (minor)
stream gives way to a single uninterrupted opposing (major) stream.
Further considerations apply to the prediction of the capacities of entry
streams at sign-controlled intersections and roundabouts.

The German and US Highway Capacity Manual models adjust the
basic gap-acceptance capacity using impedance factors to allow for
interactions among various conflicting movements subject to several levels
of priority (TRB 1985; Brilon 1988; Brilon and Grossman 1991). A critical
examination of this method is currently being undertaken.

Traditionally, roundabouts are analysed as a series of T-junctions,
i.e. as a basic gap-acceptance process where an entry stream gives way to
a circulating stream. The only dependence among traffic streams
entering from various approaches is modelled through the contributions of
entry flows to circulating stream flow rates. This method has been found
to overestimate capacities especially under heavy circulating flow
conditions. Work is in progress to develop models to adjust basic
gap-acceptance capacities at roundabouts to allow for the effects of arrival
(origin-destination) patterns and the amount of queueing of approach
(entry) streams.
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It is possible to use the models presented in this paper on a lane-by-
lane or lane group basis by choosing appropriate parameters relevant to
the application. The lane-by-lane method is preferred due to better
accuracy levels that can be achieved, especially in the prediction of queue
lengths.

The new arrival headway distribution, capacity and performance
models were being incorporated into the SIDRA software package at the
time of the writing of this paper.
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