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ABSTRACT

New analytical models are presented for predicting various performance
statistics (delay, queue length, proportion queued, queue move-up rate and
stop rate) for traffic in approach lanes controlled by give-way and stop
signs and fixed-time signals. The models are also applicable to
roundabouts. An integrated modell ing framework is employed for
consistency among different statistics and among models for different
intersection types. The models have the traditional two-term form used for
fixed-time signals, with additional calibration factors introduced for each
term of each model. The additional factors help to allow for the effects of
variations in arrival flow rates and cycle capacities. The models for
unsignalised intersections were developed by converting the block and
unblock periods in traditional gap acceptance modelling to effective red
and green periods by analogy to traffrc signal operations. This enabled the
modelling of the average back of queue, proportion queued and queue
move-up rates in a manner consistent with models for signalised
intersections. Equations to predict the 90th, 95th and 98th percentile queue
lengths are also presented. Data generated by a modified version of the
microscopic simulation model MODELC were used for model calibration.
Models were derived using a bunched exponential model of arrival
headway distributions for all traffic streams.
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1. INTRODUCTION

This paper presents new analytical models of traffic performance (delay,
queue length, proportion queued, queue move-up rate and stop rate) for
approach lanes controlled by give-way (yield) and stop signs and fixed-time
signals. The models are also applicable to roundabouts. The performance
models are based on the theoretical framework previously developed for
modelling delay, queue length and stop rate at fixed-time signals in an
integrated manner (Akgelik 1980, 1981, 1988, 1990a). This framework is
employed for consistency in modelling different statistics and modelling
different intersection types.

The modelling framework presented here makes use of the work of
many researchers who contributed to the modell ing of signalised
intersection delays previously, but is unique in predicting queue length,
proportion queued, queue move-up rate and stop rate in a way integrated
with the modelling of delay. Overflow queue formulation is central to the
modelling of delay, queue length and queue move-up rate. This method
provides a convenient l ink between steady-state and time-dependent
formulations (Akgelik 1980), thus allowing for easy model calibration
using field or simulation data. The models presented here also differ from
most traditional models in the use of capacity per cycle as an additional
parameter in performance prediction.

The traditional two-term form is used with additional calibration
factors introduced for each term of each model. The additional factors
help to allow for the effects of variations in arrival flow rates and cycle
capacities. They also help to achieve improved accuracy in predicting
relative values of a given statistic for low and high degrees of saturation.
Although results for fixed-time (pretimed) isolated signals are given in
this paper, the model structure allows for the development of similar
models for vehicle-actuated signals and closely-spaced intersections
(Akgelik l994a,c; Akgelik and Rouphail 1994).

The models for  unsignal ised intersect ions represent a new
development to fill the gap in modelling queue length, proportion queued
and queue move-up rates in the context of gap acceptance modelling. The
traditional gap-acceptance and queueing theory models do not give
sufficient information for intersection design purposes since they predict
the average cycle-based queue length rather than the average back of
queue, and models for predicting queue move-up and stop rates do not
exist other than recent work by Troutbeck (L993).

The commonly-used average cycle-based queue length incorporates
all queue states including zero queues. The back of queue is a more useful
statistic since it is relevant to the design of appropriate queueing space
(e.g. for short lane design). The back of queue is also used for the
prediction of such statistics as the saturated portion of the green period
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and for modelling sholt lane capacities. In addition to the average values
of $e back of queue, this paper presents equations to predict the 90th, 95th
and 98th percentile queue lengths.

The models for unsignalised intersections were derived by extending
the traditional gap acceptance modelling by treatin g block ind. unbtock
periods in a priority (major) stream as red. and, grin periods in a way
similar to the modelling of signal-controlled traffic 

"ir""-, 
(Akgelik

1994b). This enabled the modell ing of the average back of qulue,
proportion queued and queue move-up rate for the entry (minor) stream in
a manner consistent with models for traffic signals. tftir presents a
methodological advantage in that the same conceptual framework is
employed in models for different types of intersection.

The performance models presented in this paper were developed
using the bunched exponentiai model of arrival 

-headway 
distribution

which is more realistic than the commonly used simple 
""p""""tial 

and
shifted exponential models (Akgelik and Cirung 19ga). The models given
here are based on the use of the bunched expJnential model for capacity
and performance prediction for all types of- i.rt"r""ction. tn moaltting
capacity of entry streams at unsignalised intersections, the headway
distribution of total traffic demand in all lanes of the *..1to. stream(s) is
adopted with different values of minimum headway and bunching
parameters for single-lane and multi- lane cases. Fo" performance
modell ing, a lane-by-lane method is adopted, and ther"fo"", arrival
headway distribution in a single lane of the approach road is considered.

The calibration of performance models was carried out using data
generated by the microscopic simulation model MODELC (chung, Yoorrg
and Akgelik 1992a,b). MODELC was modified to incorporate the calibrated
arrival headway distribution model and generate data required for the
calibration of the new performance models. The models for unsignalised
intersections were derived by simulating a single uninterrupted opposing
(major) stream' As such, they are applicable to all basic gup ..."ptance
situations including roundabouts. of course, different sets or g.p
acceptance parameters are used for roundabout and sign-control cases.

Originally a roundabout simulation model, MODELC was extended to
simulate fixed-time signal control conditions in a simple way making use
of the analogy between gap acceptance and signal operations. The models
for fixed-time signal operations represent a refinement of the current
models to achieve improvements related to a more flexible model
structure, the use of the bunched exponential headway distribution model,
the- need for performance models for lane-by-lane application (earlier
models were calibrated for lane groups), and the need for information on
the 90th, 95th and 98th percentile qn-n" lengths for design purposes. The
comparison of results from MODELC with known models for trafnc signal
operations helped to validate various simulation algorithms.

Before presenting the new performance formulae, the traffic signal
analogy for gap acceptanc" p"o."..es is explained.
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2. I.JNSIGNALISED II{TER,SECTION ANALYSIS
BY SIGNAL OPERATIONS AI\ALOGY

A method for treating the traditional gup acceptance modelling used for
unsignalised intersections by analogy to traffic signal operations was
conceived by Akgel ik (1991) and is discussed in more detai l  in
Akgelik (1994b). The underlying assumptions are shown in Figure 1
where an entry (minor) stream gives way to an uninterrupted major
(priority) stream. The method derives equiualent auerage red, green and
cycle times (r, g, c) for use in capacity and performance models
considering average durations of block and unblocfr periods (tb, tu) in the
major (priority) stream as used in traditional gap acceptance modelling
(Tanner L962,1967; Troutbeck 1986, 1988, 1989, l-990, 1991a, 1993; Akgelik
and Troutbeck 1991).

The basic formulae for unsignal ised intersect ion model l ing,
including the capacity and minimum delay formulae, are expressed by
Equations (1) to (8). All capacity and delay calculations are carried out for
individual lanes of entry (minor) movements, but traffrc in all lanes of the
major (conflicting) movement is treated together as one stream. When
there are several conflicting (higher priority) streams, they are combined
together and treated as one stream.

major stream vehicles
(
\, )

-/

n"-----t
f"-+

major
stream

entry
stream

14
entry stream vehicles

Fig. I - Signal operations analory for gap acceptance modelling
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where

t5,t, = average durations of the block and unblock periods in the major
traffic stream (sec);

c - equivalent average cycle time corresponding to the block and
unblock periods in the major traffrc stream (c = r + g) (sec);

r, g = equivalent average red and green times corresponding to the
block and unblock periods in the major traffrc stream (sec);

I - equivalent lost time that corresponds to the unused portion of the
unblock period (sec);

u, y = equivalent green time ratio (green time/cycle time) and flow ratio
(arrival flow/saturation flow) for the entry stream;

sg = equivalent capacity per cycle for the entry stream, i.e. the
maximum number of vehicles that can discharge during the
average unblock period (veh), where s is in veh./s;

s - saturation flow (s = 3600/B) (veh/h);

o, B = mean critical gap and follow-up (saturation) headway for the
entry stream (sec);

a = capacity of the entry stream (veh/h);

Qg = capacity estimate using the gap-acceptance method (veh/h);

Q- = minimum capacity (veh/h);

nm = minimum number of entry stream vehicles that can depart under
heavy major stream flow conditions (veh/min);

dm = minimum delay experienced by the entry stream vehicles (sec)
(see Cowan 1984, L987; Troutbeck 1986, 1989, 1991a, f993);

I = a parameter in the exponential arrival headway distribution
model;

q = proportion of free (unbunched) vehicles in the traffic stream (Qrr-,

for the major stream, 9s for the entry stream);

A = minimum arrival (intra-bunch) headway in the traffic stream
(sec) (A* for the major stream, A" for the entry stream);

b = a bunching factor in the formula for estimating proportion of free
(unbunched) vehicles in the traffic stream;

qe = arrival flow of the entry lane (veh/h);

qm = total arrival flow of the major stream (veh/s or veh./h; expressed
in pcu/s or pcu./h if adjusted for heavy vehicle effects using the
passenger car equivalents method see the Concluding
Remarks .

When there are several confl icting (higher priority) streams,
the total major stream flow (q-) is calculated as the sum of all conflicting

stream flows and parameters Arr,, 9^ are determined accordingly.

5
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Equat ions  (1 )  to  (6 )  shou ldbeusedforem> 0  ( fo rgm = 0 ,  r=  0 ,  g=c ,u  =  1 .0 ,
a-*-: ?_690/0, d- = 0, and the gap-acceptance based delay, queue length, etc.
will all be zero.

Equations (1) to (8) are based on a bunched exponential distribution
model of arrival headways, known as Model MB (Cowan Lg7E, iroutbeck
1986,1989,1991-a). A detailed discussion of this model and the results of its
calibration using real-l i fe data for single-lane traffic streams and
simulation data for multi-lane streams are given in Akgelik and Chung(1994). The bunched exponential distributio.t i, relatively new and its use
is less common than the simple negative exponential (Model M1) and
shifted negative exponential distributions (Modet M2) which are used in
th_e traffic analysis literature as models of rand,om aniuals. This paper
adopts the more realistic MB model for all analyses to replace the Ml and
M2 models.

Important parameters which describe Model MB are A and g. The
M3 model with <p estimated from Equation (g) will be referred to as Model
M3A. In addition to the use of an estimate of g from Equation (B), Model
M3 can be used with a specified (measured) value of <p. The parameters for
the M3A model calibrated for uninterrupted flow condiiions, and for
roundabout circulating streams are summarised in Tabte f . irlote that
Models M1 and M2 can be derived as special cases of the MB model
through simplifying assumptions about the bunching characteristics of
the arrival stream: both models Ml and M2 assume no bunching for all
levels of arrival flows (g = 1), and Model M1 also assumes A = 0, therefore ),
equals the total flow. Also note that the shifted negative exponential model
(M2) is normally used for single-lane traffic only.

An example of equivalent red, green and cycle times is given in
Figure 2 for the case of a simple gap-acceptance situation with I single-
lane major stream (Am = 1.5 from Tabte 1) with a. = 4 s, F = 2 s.

Table I

summary ofparameter values for the bunched extrronential
arrival headway distribution model n[BA

Total number
of lanes

Uninterruoted
traffic streams

Roundabout
circulatinq streams

A h
U q A b I

1
I 1.5 0.6 e -0.9 q 2 25 e -5.0 q

2 0.5 05 s -0.25 q 1 25 e -2'5 q

>2 0.5 0.8 e -0.4 q Same as the 2-lane case
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Equivalent
cycle, green
and red
t imes (sec)

0  5 0 0  1  0 0 0  1  5 0 0  2 0 0 0

Major stream flow rate (veh/h)

Fig. 2 - The equivalent red, green and cycle times as a function of the
major stneam flow rate for a simple gap acceptance example

3. PERFORMANCE MODEIS

The traditional two-term model structure for delays at traffic signals is
adopted for unsignalised intersection modelling through the use of traffic
signal analogy for gap acceptance processes discussed in the previous
section and by introducing a separate calibration factor for each term of
each performance statistic (Akgelik 1994c). In the traditional delay
models, the first terms represent a uniform-flow model only, and any
variational effects are included in the second term (the ouerfloro term). In
the new models, the frrst term calibration factors help to predict the effect
of variations in queue clearance times under low to medium flow
conditions (when there are no overflow queues), and any additional delays,
etc. due to overflow queues are included in the second (overflow) terms.

Overflow queues and the associated delays and stops (queue move-
ups) result from insufficient cycle capacity due to (i) tempordry cycle
oversaturation due to the random variations in arrival flows (and in
capacities in the case of gap acceptance processes), and (i1) permanent
oversaturation when the average flow rate exceeds the overall capacity
during the specified flow period.

Separate calibration of the first and second terms of each
performance model helps to obtain better predictions of the proportion
queued, saturated portion of green period, and the number of major stops
and queue move-ups (multiple stops in the queue). Separate information

i\ ;;"-;;. cycle time ,/:

NJ 
'" 

| ,/i
. . -V-. , ' ' ' \  Equivalent

' - - _ _  
_ . , r ! . r ' t ' -  

r g d  t i m e

Equivalent Equivalent

oreen t ime cYcle t ime
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about major stops and queue move-ups
prediction of fuel consumption, pollutant
similar statistics.

This paper uses the term proportion queued rather than the term
proportion stopped. This helps to distinguish between geometric stops
(associated with delays in negotiating the intersection *itfr no queueing
effects) and the stops due to traffic control (red signal, or time until an
acceptable gap occurs in the major stream). The latter corresponds to the
delays predicted by the performance models given in this p.pu", and is
better expressed by the term queueing. For example, att vehicies have to
s_top at a stop sign (geometric stops), but only a proportion of these stops are
due to the gap acceptance process (queueing stops).

similarly, a distinction between queueing d.eray and stopped delay is
observed. The former includes the stopped delay as well u. tfr" delays
associated with queue move-ups. However, the queueing delay can be so
small that it corresponds to a slow-down only. The delays given in this
paper are overall average delays including deceleration and acceleration
delays for major stops, but excluding any geometric delays. The HCM
method (TRB 1985) uses the average stopped (or queueing) delay calculated
as d/l.3 where d is the average overall delay (it is not clear if the factor l.B
is meant to apply to stopped delay or queueing delay). However, the ratio of
the- stopped (or queueing) delay to the overall delay is expected to decrease
with increased queueing delay. This ratio would also depend on approach
and exit speeds since deceleration and acceleration delays depend on the
initial and final speeds involved in a stop-start cycle.

The basic two-term models for average delay, average back of queue
and effective stop rate can be expressed as the foliowing iiterrelated set of
equations:

d = d l  +dz = fard, r+fazdo = fd ta"+ fa2f

Nn = Nbt + NUz = fbt Nbr, + fiz No

h - h1 +hz - fi,r hr, + flrz ho = flrt n" * fnz 
#

= average delay in seconds per vehicle,
= average back of queue (vehicles),

h = effective stop rate,
drr, Nbn, hu = uniform flow components,
do, No, ho = ouerflow components,
far, flr, flrt = first-term calibration factors,
faz,fnz,fnz = second-term calibration factors,
No = average overflow queue,

Akgelik & Chung

is useful for more accurate
emissions, operating cost and

(e)

(10 )

(11)

where

d

N6
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a = approach lane capaci ty in vehic les per second (see
Equations 5 and 17), and

qc = average number of arrivals per cycle (q = average arrival
flow rate in vehicles per second and average cycle time in
seconds).

The effective stop rate is obtained by expressing the major stops (frrst
term) and the queue move-ups (second term) in equiualent stop ualues
(ESVs) using adjustment factors e-, and €qm, r€spectively:

h = €ms pq + eqm hqm ( 11a )

where

€ms

eqm

Pq

= ESV factor for major stops (corresponding to h1 as the effective
stop rate for major stops: hr = flrr hu = erns pq),

= ESV factor for queue move-ups (corresponding to h2 as the
effective stop rate for queue move-ups: hz - firz ho = €q* hq*),

= proportion queued (corresponding to major stops) given by

Pq = fpq h, subject to pn S 1.0 ( t2 )

hq- = queue move-up rate (corresponding to multiple stops in queue
before clearing the approach lane) given by

hq* = fqm ho = fqrn (No/qc) (13)

In the above models delay, queue length, stop rate and queue move-up
rate statistics represent average values for all vehicles queued and
unqueued. The relationships between effective stop rate, proportion
queued and queue move-up rate will be further discussed later in this
section.

Non-Overflow Queue Terms

The first terms of Equations (9) to (11), namely dt, Nbt and h1, represent
the performance of traffic in the approach lane under low to medium flow
conditions since the overflow term is zero or negligible in those conditions.
The corresponding calibration factors fdt, fbt, flrr (also fpq in Equation 12)
are used to allow for the effect of variations from uniform-flow conditions.
These variations depend on (i) arrival characteristics: uniform or
platooned arrivals considering isolated and closely-spaced/coordinated
intersections; and (ii) service characteristics: constant green and red
times for fixed-time signals, or variable green and red times for actuated
signals (Akgelik 1994a,c) and unsignalised intersections (by signal
operations analogy as discussed in Section 2). The calibration factors
given in this paper apply to isolated intersection conditions (i.e. without
any platooned arrivals or signal coordination effects).

T}ae uniform-flow components (do, Nbo, hrr) are derived assuming
that the number of vehicles which arrive during each signal cycle is frxed
and equivalent to the average arrivals per cycle (qc), and that arrivals are
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distributed uniformly throughout the signal cycle
flow rate (q). These are expressed as follows:

0 .5 r (1  -u )- - l : y  
fo rxs1 .0

0 .5 r  fo rx> I .O

Nbr, = fr
=  qc

du

1-u
hu 1-y

= 1.0

for x S 1.0

for x > 1.0

for x S 1.0

for x > 7.0

Akqelik & Chung

at the average

(14 )

(15)

(16)

( 17a )

(1%)

where

t, g, c = effective red, green
intersections, these
Section 2),

and cycle time in seconds (for unsignalised
are estimated using the equations given in

u = green time ratio (ratio of effective green time to cycle time):
u  =g /c

y = flow ratio (ratio of arrival flow rate to saturation flow rate):
y  =q /s

x = degree of saturation (ratio of arrival flow rate to capacity):
x =q/e=qc/sg

a = capacity under the specified flow conditions
or per second:

a = sg/c

(  17c)

in vehicles per hour

(17d)

flow period in

hour or
is used

vehicles

qc=

q -

arrival (demand) flow rate during the specified
vehicles per hour (or per second),
average number of arrivals per cycle (vehicles),
saturation (queue discharge) flow rate in vehicles per
per second (for unsignalised intersections, s = 8600/F
where p is the follow-up headway in seconds and s is in
per hour), and

sg = capacity per cycle (vehicles),

For oversaturated conditions (x > 1), the values of f61, f61 and f61 at x=1(fdt(x=l), fbt(x=t) and f6111=r)) are used so that the first;;;; of arl Nur, hr
models are constant for x > 1.

For minimum flow conditions,. the queue length is approximatelyzero, and the minimum delay (d_)'is given by Equation (IZi with y _ 0,
therefore:
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(18a )dm =  0 .5 r (1 -u )

Similarly, the minimum proportion queued (nq-) is obtained by putting
y = 0 in Equation (16):

Pqm =  (1 -  u ) (18b)

Equation (14) is commonly used as the first term of most traditional
delay models for isolated fixed-time signals (Webster 1958; Webster and
Cobbe 1966; Miller 1968; Akgelik 1981; Teply 1984; TRB 1985). For
signalised intersections, the traffic movements which receive two green
periods per cycle (e.9. protected and permissive turns), more complex
forms of Equations (14) to (16) are needed. Most existing delay models
apply Equation (U1 6, combining the two green periods as a single period
with an equivalent capacity. However, this method is not sufficiently
accurate, particularly in the case of non-consecutive green periods.
SIDRA (Akgelik 1990a, Akqelik and Besley 1992) uses an extended model
to estimate dq, N6r, and ho for the case of two green periods, allowing for
different conditions of residual queues between the two green periods. The
details of this model are yet to be published.

For closely-spaced signalised intersections (see Akqelik and Rouphail
L994), platooned arrivals cause a variation from uniform flow conditions
because arrivals occur at different rates during different intervals of the
signal cycle (regularly in the case of coordinated signalised intersections).
The US Highway Capacity Manual (TRB 1985) uses progression factors as
a simple method of modelling the effects of platooned arrivals. Further
research is being carried out on this subject.

Overflow Queue Terrns

From Equations (9) to (11), the second terms of the delay, queue length and
stop rate models are seen to be commonly expressed as a function the
average overflow queue (No). The following steady-state expression for
average overflow queue was developed by Akqelik (1980, 1988, 1990a,b) by
generalising an expression he originally used as a simple approximation
to Miller's (1968) expression for delay at signalised intersections:

ko (x-xo)
fo rx>  xo  (19)

otherwise

where ko (used as k in previous publications) is a parameter that
determines the steepness of the overflow queue function, and xo is the
degree of saturation below which the average overf low queue is
approximately zero.

Equation (19) can be considered to form the basis of various delay
equations used in the literature for frxed-time traffic signal operations as
discussed previously (Akgelik 1988, 1990a,b). This formula has recently
been adopted by Tarko and Rouphait (1994) as "a distribution-free model for
estimating random queues in signalised networks".

1-xNo=
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Equation (19) as a steady-state expression is based on the assumption
that arrival demand conditions last indefinitely. It is valid only for
degrees of saturation up to about 0.9b. A time-d.epend,ent function
corresponding to Equation (19) can be derived using the well_known
coordinate transformation technique (Akqelik 1gg0). This function is
based on the assumption that arrival demand conditions last for a finite
period of time (Td. Derived on this basis, the time-dependent function can
be used for oversaturated conditions. Using the time-dependent form of
Equation (19) in Equations (g), (10) and (15), the following,time_dependent
functions for the overflow terms of average delay and back of qu"o", as
well as the queue move-up rate are obtained:

d,2 = eoorrle*"] 4.gt#{ l
= Q

Nuz = o.2letr I r, * \/r, * 9{S")- I
Y-  QTr  I

-0

,  0 .25QT1 y.  ^Mhq- = 
?l .e*\rr .-raT--- f  forx) xo (22)

-  0 otherwise

where z = x -1, Tf = flow (analysis) period in hours, e = capacity in veh,/h,
QTr = throughput (maximum number of vehicles that can be discharged
during the flow period), qc = number of arrivals per cycle (q is the arrival
flow rate in veh/s, c in seconds), and the second-ter* pi"urrreters are
defined as: k4 = fd2 ko, k6 = fbz ko and kqm = fq- ko where faz, faz and fqm
are as used in Equations (g), (10) and (15).

The duration of the flow period affects the estimates of performance
statistics significantly. Larger delays, queue lengths, and stop rates will
result from longer flow periods for a given demand ievel. Ti= 0.2b h is
built into the HCM dgl?y formula (TRB 1g8b) whereas the models given
here allow Tg to be variable.

Calibration Method

Using the simulation data generated by
fb1, e*", fpq, Xo, ko,fd2, fuz and fqm were
calibration method:

(a) Calibrate the steady-state expression for the average overflow queue
N6 (Equation 1g) by determining ks and xo parametErs using orr"iflo*
queue data for undersaturated flow conditions (x < 0.9b). Determine
xo as the degree of saturation below which Ne is negligible (No < 0.05
vehic les).

fo rx>  xo

otherwise

(20)

fo rx>  xo  (2 I )

otherwise

ModelC, model parameters f61,
determined using the following
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(b) Determine the first term calibration factors (fat, ftt, e-s, fpq) using
data representing the cases where N6 is negligible (x < xo or No < 0.05)
and therefore the second term is zero.

(c) Determine the second term calibration factors for delay and queue
length (faz and f62 in Equations 9 and 10) using the overflow data
calculated as the total value of delay or queue length less the value of
the calibrated first term.

(d) Determine the calibration factor for queue move-up rate (fqm) using
the move-up rate data (hq-) and ho = No /qc calculated from
Equation (13).

(e) Calculate composite parameters flrr = €ms fpq for the first term of the
effective stop rate formula (Equation 11), and ka = faz ko, k5 = f62 ko and
kq* = fqm ko for the time dependent functions for second terms of
delay, queue length and queue move-up rate (Equations 20 to 22).

Calibration Results

Calibration results are given in Equations (23) to (26) for unsignalised
intersections and Equations (27) to (30) for fixed-time signals. Graphs
showing simulated vs estimated average overflow queue length (No),

average delay (d), average back of queue (Nu), proportion queued (Rq) and
queue move-up rate (hqm) for unsignalised and signalised intersections
are shownrnFigures 3 to 7. The comparisons are based on steady-state
model predictions.

For a simple gap-acceptance case with a single-lane major stream
(Am = 1.5, cr - 4 s,9 = 2 s), the average delay (d) and proportion queued (pq)
as a function of the entry lane degree of saturation (x) are shown in
Figures 8 and I for major stream flow rates of {- - 360, 720 and 1080 veh/h
(to represent low, medium and high flow levels). Both the major stream
and the entry stream are considered to consist of cars only. Figures 10 and
11 show the average back of queue (Nu) and queue move-up rate (hqm) as a
function of the major stream flow rate (q-) for entry flow rates of q" - 300,
600 and 900 veh/h. The time-dependent forms of the delay, average back of
queue and queue move-up rate models are used for graphs given in
Figures 8, 10 and 11with flow period duration Tr = 0.5 h.

U nsignalis e d int e rs e e tinns

First-term parameters

2 dr" (1 + 0.3 yo.2o;
far =

r (1 -u )

fu - 1.2 9"0'8

tq = 0.75 9e (sg)o'ao

€ms = 1.65 (sg)-0'40 to'ro

subject to fat > 1.0

subject to fu > 1.0

subject to fpq > 1.0

subject to e*, < 1.0

(23a)

(23b)

(24a)

(24b )
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S e co nd - t ertn p a,r arrLet er s

Xs = 0.1-4 (sg)0.5s subject to xs S 0.gS

ko = o.B 9" (sg)1.10 (d-e)

kd = 0.17 e" (sg)1.a0 y-0.40 (d*e)

kb = 0.45 g" (sg)1.70 y0.40(dme)

kn- = 1.1 9u (sg)1'10 yo'50 (dmQ)

where 9e is the proportion of unbunched traffic in the entry lane, sg is the
capacity per cycle (vehicles), y is the flow ratio, drn is the minimrrrr, d"lry
(in seconds), Q is the entry lane capacity (in vehicles per second), and r, u
are the effective red time and green time ratio (see secfl on 2\.

Fi.red.time signa,ls

First-term parameters

fat = 1 + 0.1 g" (sg)0.25 to.ro

Akgelih & Chung

(25a)

(25b)

( 26a)

(26b)

( 26c)

(27a)

(27b)

(28a)

(28b)

( 29a)

(2eb)
(30a)

(30b)

(30c)

lane, sg is the

fn r  =  1+0 .1g" (sg )0 .10 t

fbq = 1 + 0.004 ge (sg)1.25 to.zs
€ms = 1.04 (sg)-0 07 yO.oa subject to e*s < 1.0

Second-term paranteters

X6 = 0.4 (sg)0'20 subject to x6 S 0.gS
ko = 0.55

kd = o'55

kb = o'55

ko- = 0.55 + 0.22 yo30

where ge is the proportion of unbunched traffic in the entrv
capacity per cycle (veh), and y is the flow ratio.
It is seen that capacity per cycle, flow ratio and proportion of unbunched
traffic in the entry lane are the parameters that appear as variational
factors for both low to medium flow conditions (in the irst term) and high
flow conditions (in the second term). Capacity per cycle was used in
earlier Australian models for overflo* q,r"o" at irxla-time signals (Miller
196!; Akgelik 1980, 1981, 1988, 1990a,b). For unsignalised intersections,
d-Q appears as an important factor as in previois models (Troutbeck
1989;^Akgelik and Troutbeck 1gg1) . The form of the first_term delay factor(far) for unsignalised intersections is a result of the use of minimurir delay
parameter in the formulation of delay in l ine with current models
(Troutbeck 1989;Akgelik and Troutbeck 1991) .
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0 2 4 6 8
Simulated average overflow queue (veh)

Fig.3 - Comparison of simulated and estimated values of aaerage
ouerflow qu,eue for signalised and unsignalised intersections
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Fig. 4 - Comparison of simulated and estimated values of aueru.ge deley
for signalised and unsignalised intersections
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Fig. 7 - Comparison of sirnulated and estirnated values of qu.euc mnae-up
ru.te for signalised and unsignalised intersections
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Fig. 9 - Prcportion qucucd as a function of the entry lane degree of
saturation for three levels of m4ior stneam andval flow rate
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Entry flow=300 veh/h

0
400 600 800 1000 1200 1 400 1 600

Major stream flow, q, (veh/h)

Fig. 11 - Queue nu)ae-up rate asa function of the major stream flow rate
for various entry flow rates

Queue l-ength

The average back of queue (NU) represents the maximum extent of
queue in an average cycle. The first term (Nrr) is useful for the prediction
of such statistics as the saturated portion of the green period and for
modelling short lane capacities. The prediction of the back of queue is
required for the design of appropriate queueing space (e.g. for short lane
design). The traditional gap-acceptance and queueing theory models do
not give suffrcient information for intersection design purposes since they
predict the cycle-average queue (N"). This is the average queue length
considering all instances during the cycle including the zero-queue states.
The commonly-used formula to calculate the cycle-average queue (Nc) is:

Nc  -dq .  (31  )
where d is the average delay from Equation (9) and q" is the average
arrival flow rate for the entry stream. Thus, the cycle-average queue is
equivalent to the total delay, or delay rate (strictly speaking, this
relationship applies to undersaturated conditions, X ( 1, only).

The 90th, 95th and 98th percentile values of the back of queue (Nnpz,)
and the cycle-average queue (Ncpzo) can be expressed as a function of the
average value (Nn or N"):

19

Ir
I

flow=600
I

/

I
Entry flow=900 veh/hc

= o 8
o

o - 6

o

E4
o

dz

Nbpzo = fbpz, Nb

Ncp7, = fcp7, Nc

(32a)

(32b)

where fbpEo and fspo/o are the factors for pth percentile queue. The
calibration results for percentile queue length prediction are given below.
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Unsignalised intersections

f1goso = 1.9 + 0.7 e-Nb/8

ilgsso = 2.5 + 0.7 e-Nb/8

fngsqo = 3.0 +0.7 e-Nb/8

fc91Vo = 2.0 + 0.6 e-N"E

fcg12o = 2.5 + 0.7 e-Nc/8

fcgSvo = 3.2 + 1.0 e-Nc/2

Fixed-time signals

f1sos" = 1.3 + 0.5 e-Nb/13

fagsEo = r.4 + 0.9 e-Nb/12

frgeso = 1.5 + 1.3 e-Nb/11

fc9y2o = I.7 + 1.3 e-N./3

fc952o = 2.! + 2.4 e-N./2

fcgsVo = 2.3 + 4.0 e-Nc/2

Akgelik & Chung

(33a)

(33b)

(33c)

(34a)

(34b)

(34c)

(35a)

(35b)

(35c)

(  364)

( 36b)

( 360)
Graphs showing simulated vs estimated g0th, gbth and ggth

percentile values of back of queue (Nbgozo, Nbssz,, Nugez) f*;;ignarised
and signalised intersections are shown in Figures 12 to 14.

For a simple gap-acceptance case with a single-lane major stream
(Am = 1.5, cr - 4 s, F = 2 s), the average, g0th, gbth and ggth percentile back
of queue values as a function of the entry lane degree of saturation (x) formajor stream flow rate of q- = 720 veh,/h are shJwn in Figure Ii. These
graphs are based on th.e time-dependent form of the model for the averageback of queue (flow period duration Tr = 0.b h).

Effective StopRate

The first terms of the equations for the average back of queue and effective
stop rate (Equations 70 and 77) conespond to major itopr, whereas the
second terms of these equations relate io qu"u, *orr-upi. The model for
tlu proportion queued (Equation ID i; related to major stops only.
The major stops include some partial stops, i.e. slow-do*.r, corresponding
to small delays at the back of the q.r"n", or slow-downs .orr"rpo.ding to
small delays generally For proportion queued, each major stop is counted
as one stop irrespective of the corresponding delay value (i.e. even if it is a
very small delay). The effects of partial stops can be taken into account in
calculating effective stop rates for.major stops by expressing the first termof the effective stop rate model (hri in terms "of 

equiuate"nt stip ualues
(ESv). In the simulation model, this was achieved by converting each
slow-down to an equivalent full stop value (less than one). As an
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approximate method, the ratio of deceleration-acceleration delays for a
partial stop and full stop was used for deriving an ESV factor for major
stops (e-r). Thus, the calibration factor fo1 allows for partial stop effects
as well as any variational effects (see Equations 11 and 11a):

firr = e-s frq subject to fnt > 1.0 (37a)

The second term of the effective stop rate model corresponds to queue
move-ups, or mult iple stops in queue. The queue move-up rate, hqm
(average number of queue move-ups per vehicle) is given by Equation (13)
where the calibration factor is fqm. To convert the queue move-up rate to
an effective stop rate, an ESV factor for queue move-ups (eqm) is used, and
h2 is calculated from:

h2 = eqm hqm ( 37b )

This method is appropriate considering both steady-state (Equation 1Ia)
and time-dependent (Equation 22) formulations.

To calculate €qm, the ratio of acceleration-deceleration delays for a
queue move-up manoeuvre (accelerate to a queue move-up speed vqm and
decelerate to zero speed) and a full acceleration-deceleration cycle to the
approach cruise speed (accelerate to vu" and decelerate to zero speed) can
be used. Although the use of full acceleration and deceleration distance
and time models are preferred for this purpose (as used in SIDRA), the
following approximate formula is useful for quick calculations:

0.33 vqm- 0.02 vo-l 's
€q- = 

o.B3 vu"- o.o2 vu"1.s
(38a)

The speed involved in queue move-up manoeuvres (vqm) is less than
the approach cruise speed (vu"), especial ly in the case of unsignalised
intersections. The queue move-up speed can be estimated from:

vqm = 3.88 (Lj sg)0'5 subject to uqm Suo" (38b)

where L; is the average queue space per vehicle (m/veh) and sg is the cycle
capacity (veh). This formula is based on the assumption that, when sg
vehicles depart in a saturated cycle (queue move-ups are relevant to
saturated cycles), all following vehicles in the queue move up (accelerate to
vqm and decelerate to zero speed) within a distance equivalent to (Lj sg).
For example, for the case when Li = 6.6 m/veh and vu" = 60 km/h,
€qm = 0.31 (sg)0.5 - 0.06 (sg)0.7s (subject to eqm < 1.0) is obtained.

Note that the effective stop rate in ESVs (Equation 11) calculated
explicitly as described above is an improvement over the earlier method for
fixed-time signals which used a constant factor of e-, = €qm = 0.9 (Akqelik
1981). Explicit calculation is particularly needed for unsignalised
intersection operations where sg, therefore vqm values are low and the
queue-move-up rates (hqm) are high.

Graphs showing simulated vs estimated effective stop rates for major
stops (hr) for unsignalised and signalised intersections are shown in
Figure 16.
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Fig. 12 - Comparison of simulated and estimated values of ghth petrentile
bach of queue for signalised and unsignatised intersections
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Fig. 14 - Comparison of sirnulated and estirnated values of 98th percentilz
bach of qu.eu,e for signalised and unsignalised intersections

--t-

Average
--rF

90th percentile
---

95th percentile
--a-

98th percentile

Fig. 15 - The average, goth, 95th and 98th percentile back of queue
functions for major stream flow rate of 720veh/h

%

O
E

' E

60

o
:t
o
f
cr
o

L

840
-o
+;
c
(l)()
dt
q

-c.

Ezo
p
o
(5

E
U'

LU

rrrl
o

-t
r#l

.!

E  D E a

r?t
E]El

60

o
. O

3to
z
q)

o
o
E20
J

rn

o
' - -  - . ;
t r :



24

s o.s
.J)

o'F0.6

o
d !

6 " ' -
(D

E' a  n Cu) -''
LU

Akgelik & Chung

a

Signalised
trl

Unsignalised

_  -  -  -  - - E -*)'
l { U

lfi

o -

0.2 0.4 0.6
Simulated effective major stop rate

Fig. 16 - Comparison of simulated and estimated values of effectiae stop
rate furmajor stops for signalised and unsignatised intersections

4. CONCLIJDING REIT{ARKS

The analytical models presented in this paper provide a consistent
modell ing framework for the comparis-on of different types of
intersections. The modelling of unsignalised intersections by analogy to
traffic signal operations enabled the modelling of the urr"iugu back of
queue and effective stop rate (inchlding major riop" and queueLorre-ups)
in a manner consistent with models for signalised intersections. The
models have been structured in a form appropriate for developing
performance models for vehicle-actuated signais.

Equations to predict the 90th, 95th and 98th percentile queue lengths
will provide valuable information to practitioners for the design of
queueing spaces. Effective stop rates predicted in equivalent stop values
(ESVs) can be used in simple methods for estimating fuel consumption,
pollutant emissions, .operating cost and similar statistics (".g. using
excess fuel consumption rate per major stop). separate predi"ction of
major stops and queue move-up rates is useful for -or" accurate
estimation of such statistics (e.g. using the four-mode elemental model in
SIDRA).

0.8
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The use of capacity per cycle as a parameter in the formulation of
overflow terms provides sensitivity to the relative characteristics of major
and minor movements. This may have an important impact on signal
timing optimisation when there are marked differences between major
and minor movement characteristics. Through the use of the bunched
exponential model of arrival headways for all traffic streams, the
performance models now take into account the effect of bunching in
approach (entry) flows as well as major (opposing or circulating) flows.

The effects of heavy vehicles in the major stream and the entry
stream can be taken into account either by adjusting gap acceptance
parameters or using passenger car equivalents (Troutbeck 1991b). The use
of passenger car equivalents to convert major stream arrival flow rates
and entry stream capacities as used in the SIDRA software package
(Akqelik 1990a; Akgelik and Besley 1992) is described in Akgelik (1991).
Further research is recommended on the effects of heavy vehicles on
arrival headway distributions and gap acceptance processes.

The capacity model for unsignalised intersections given in this paper
differs from those published previously. Various forms of the new model
based on different assumptions about arrival headway distributions were
compared with more traditional models (Akgelik 1994b). It was found that
(i) there is little difference between various models for low major stream
flows, (ii) the differences among models which use the same arrival
headway distribution are negligible, and (iii) the impact of the assumption
about the arrival headway distribution is significant at high major stream
flow levels.

The capacity model given in this paper for unsignalised intersections
is relevant to a basic gap-acceptance situation where an entry (minor)
stream gives way to a single uninterrupted opposing (major) stream.
Further considerations apply to the prediction of the capacities of entry
streams at sign-controlled intersections and roundabouts.

The German and US Highway Capacity Manual models adjust the
basic gap-acceptance capacity using impedance factors to allow for
interactions among various conflicting movements subject to several levels
of priority (TRB 1985; Brilon 1988; Brilon and Grossman 1991). A critical
examination of this method is currently being undertaken.

Traditionally, roundabouts are analysed as a series of T-junctions,
i.e. as a basic gap-acceptance process where an entry stream gives way to
a circulating stream. The only dependence among traffic streams
entering from various approaches is modelled through the contributions of
entry flows to circulating stream flow rates. This method has been found
to overestimate capacities especially under heavy circulating flow
conditions. Work is in progress to develop models to adjust basic
gap-acceptance capacities at roundabouts to allow for the effects of arrival
(origin-destination) patterns and the amount of queueing of approach
(entry) streams.

25
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It is possible to use the models presented in this paper on a lane-by_
lane or lane group basis by choosing appropriate parameters relevant to
the application. The lane-by-lane *eihoh is preferred due to better
accuracy levels that can be achieved, especially in the prediction of queue
lengths.

The new arrival headway distribution, capacity and performance
models were being incorporated into the SIDRA software pu.kug" at the
time of the writing of this paper.

REFERH\CES

AKQELIK, R. (1980). Time-Depend,ent Expressions for Delay, stop Rate
and Queue Length at Traffic Signals. Australian Road Research Board.
Internal Report AIR 367-1.

AKQELIK, R. (1981). Traffic Signals: Capacity and. Timing Analysis.
Australian Road Research Board. Research Report ARR No. ]r2B
(Sth reprint: 1993).

AKQELIK, R. (1988). The Highway capacity Manual delay formula for
signalised intersections. ITE Journal, bS (B), pp. 28-27.

AKQELIK, R. (1990a). Catibrating SIDRA. Australian Road Research
Board. Research Report ARR No. 180 (2nd. edition, rst reprint lggs).

AKQELIK, R. ( 1990b). 9IDRA for the Highway capacity Manual.
Compendium of Technical Papers, 60th Annrr*l M""ii.rg of the institute of
Transportation Engineers, Orlando, Florida, pp. 210-219.

AKQELIK, R. (1991). Implementing Round,about and Other (Jnsignalised,
Intersection Analysis Methods in SIDRA. Australian Road Research
Board. Working Paper WD TEgl /002.

AKQELIK, R. (1994a). Estimation of green times and cycle time for
vehicle-actuated signals. Paper No. 940446 presented at tine ZSrd, Annual
Meeting of rransportation Research Board., Washington, January lgg4.

AKQELIK, R. (1gg4b). Gap acceptance modelling by traffic signal analogy.
Paper to appear in Traffic Engineering and, Control.

AKQELIK, R. (1994c). Analysis of Vehicte-Actuated Signal Operations.
Australian Road Research Board. Working paper wl TE9B/002
(in preparation).

AKQELIK, R. and BESLEY, M. (1992). SIDRA (Jser Guid.e. Australian
Road Research Board. Working Paper WD TE gI/012.

AKQELIK, R. and CHUNG, E. (1994). Calibration of the bunched
exponential distribution of arrival headways. Road, and. Transport
Research 3 (1), pp.42-5g.



AkEelik & Chung

AKQELIK, R. and ROUPHAIL, N.M. (1993). Estimation of delays at traffic
signals for variable demand conditions. Transportation Research 27F (2),
pp. 109-131.

AKQELIK, R. and ROUPHAIL, N.M. (1994). Overflow queues and delays
with random and platooned arrivals at signalised intersections. Paper to
appear in Journal of Aduanced Transportatioz (Special Issue on Traffic
Signals).

AKQELIK, R. and TROUTBECK, R. (1991). Implementation of the
Australian roundabout analysis method in SIDRA. In: U. Brannolte (ed.)
Highway Capacity and Leuel of Seruice, Proc. of the International
Symposium on Highway Capacity, Karlsruhe, A.A. Balkema, Rotterdam,
pp. 17-34.

CHUNG,  E. ,  YOUNG,  W.  and AKQELIK,  R.  (1992a) .  Mode lC:
a simulation model for roundabout design. Proc. 7th R4AAA Conference,
Vol. 1, pp.66-74.

CHUNG, E., YOUNG, W. and AKQELIK, R. (1992b). Comparison of
roundabout capacity and delay estimates from analytical and simulation
models. Proc. 16th ARRB Conf.16 (5), pp. 369-385.

COWAN, R.J. (1975). Useful headway models. Transportation Research
9 (6), pp. 371-375.

COWAN, R.J. (1984). Adam's formula revised. Traffic Engineering and
Control, 25 (5), pp. 27 2-27 4.

COWAN, R.J. (1987). An extension of Tanner's results on uncontrolled
intersections. Queueing Systems Vol.1, pp. 249-263.

MILLER, A. J. (1968). Signalised Intersections Capacity Guide.
Australian Road Research Board Bulletin No.4.

TANNER, J.C. (1962). A theoretical analysis of delays at an uncontrolled
intersection. Biometrika,49 (1 and 2), pp. 163-170.

TANNER, J.C. (1967). The capacity of an uncontrolled intersection.
Biometrika, S4 (3 and 4), pp. 657-658.

TARKO, A. and ROUPHAIL, N. (1994). A distribution-free model for
estimating random queues in signalised networks. Paper No. 940611
presented at the 73rd Annual Meeting of Transportation Research Board,
Washington, January t994.

TEPLY, S. (Ed.) (1984). Canadian Capacity Guide fo, Signalised
Intersections. Institute of Transportation Engineers, District 7, and the
University of Alberta. Edmonton, Alberta.

TRANSPORTATION RESEARCH BOARD (1985). Highway capacity
Manual. Special Report 209, Washington, D.C.



2U Akgetik & Chung

TROUTBECK, R.J. (1986). Average delay at an unsignalised intersection
with -  two major streams each having a dichotomised headway
distribution. Transportation Science 20 (4), pp. 272_2g6.

TROUTBECK, R.J. (1gSS). Current and future Australian practices for
the design of unsignalised intersections. In: w. Brilon (ed,.) intersections
Without Traffic Signals , Proceedings of an International Workshop,
Bochum, West Germany, Springer-VerLg, Berlin, pp. 1_19.

TROUTBECK, R.J. (1989). Eualuating the performa,nce of a Round,about.
Australian Road Research Board. special Report sR 45.

TROUTBECK, R.J. (1990). Roundabout capacity and the associated delay.
In: M. Koshi (ed.) Transportation and rrilfic Theory, proceedings of the
Eleventh International Symposium on Transportation and TraffiJ Th"o"y,
Yokohama, Japan, Elsevier, New york, pp. S0-SZ.

TROUTBECK, R.J. (1991a). Recent Australian unsignalised intersection
research and practices. In:W. Brilon (ed.) Intersecti,ons Without Traffic
signals II, Proceedings of an International workshop, Bochum,
Germany, Springer-Verlag, Berlin, pp. 2Bg-257 .

TROUTBECK, R.J. (1gg1b). Discussion of the effects of heauy uehicles and,
lane uti l isation at roundabouts. Australian Road Research Board.
Working Paper WD TEgg/008.

TROUTBECK, R.J. (1gg3). The characteristics of the times drivers are
stopped at  unsignal ised intersect ions.  In:  c.  F.  Daganzo (ed.)
Transportation and Traffic Theory, Proceedings of the 12th Iiternational
symposium on the Theory of rraffic Flow .nd rru.rsportation, Berkeley,
California, USA, Elsevier, Amsterdam, pp. E7S-8g4.

WEBSTER, F.v. (1958). Traffic signal settings. Road Res. Lab. Tech.
Paper No. 39. HMSO, London.

WEBSTER, F.V. and COBBE, B.M. (1966). Traffic Signals. HMSO,
London.


	AkcelikChung_1994_2ndISHCSympCover
	AkcelikChung_1994_2ndISHCSympPaper

