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Abstract

Delay is an important parameter that is used in the optimization of traffic signal timings and the esti-
mation of the level of service at signalized intersection approaches. However, delay is also a parameter that

is difficult to estimate. While many methods are currently available to estimate the delays incurred at in-

tersection approaches, very little research has been conducted to assess the consistency of these estimates.

This paper addresses this issue by comparing the delays that are estimated by a number of existing delay

models for a signalized intersection approach controlled in fixed-time and operated in a range of conditions

extending from under-saturated to highly saturated. Specifically, the paper compares the delay estimates

from a deterministic queuing model, a model based on shock wave theory, the steady-state Webster model,

the queue-based models defined in the 1981 Australian Capacity Guide, the 1995 Canadian Capacity Guide

for Signalized Intersections, and the 1994 and 1997 versions of the Highway Capacity Manual (HCM), in

addition to the delays estimated from the INTEGRATION microscopic traffic simulation software. The

results of the comparisons indicate that all delay models produce similar results for signalized intersections

with low traffic demand, but that increasing differences occur as the traffic demand approaches saturation.

In particular, it is found that the delay estimates from the INTEGRATION microscopic simulation model

generally follow the delay estimates from the time-dependent models defined in the 1997 HCM, 1995

Canadian Capacity Guide, and 1981 Australian Capacity Guide over the entire range of traffic conditions

considered.
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Nomenclature

Ai area of region i in time–space diagram (kmh)
c s � ge=C ¼ capacity of intersection approach (veh/h)
C traffic signal cycle length (s)
d average delay per vehicle (s/veh)
D total delay incurred on intersection approach (veh s)
do deterministic overflow delay (s/veh)
d1 uniform delay (s/veh)
d2 incremental delay accounting for randomness of vehicle arrivals and over-saturation

delay (s/veh)
d3 residual delay for over-saturation queues that may have existed before the analysis

period (s/veh)
fPF adjustment factor accounting for the quality of progression in coordinated systems
fr adjustment factor for residual delay component
fp adjustment factor for situations in which the platoon arrives during the green interval

(0.9–1.2)
ge efective green interval duration (s)
k incremental delay factor accounting for pre-timed or actuated signal controller set-

tings
ka density of approaching traffic (veh/km)
kd density of discharging traffic (veh/km)
ki traffic density in zone i (veh/km)
kj jam density (veh/km)
I adjustment factor for upstream filtering/metering
n;m capacity guide model parameters
N number of cycles over which calculations are performed
P proportion of vehicles arriving during effective green interval
re effective red interval duration (s)
s saturation flow rate (veh/h)
SWij speed of shock wave between traffic zones i and j (km/h)
tcðuÞ time to clear the queue of vehicles in under-saturated conditions (s)
tmðuÞ time to maximum extent of queue in under-saturated conditions (s)
T evaluation period (h)
TT travel time of vehicle during trip
TTo total travel time on intersection approach during evaluation period, over-saturated

conditions (veh s)
TTu total travel time on intersection approach during signal cycle, under-saturated con-

ditions (veh s)
uf vehicle speed under free-flow conditions
ui traffic speed in zone i (km/h)
uðtÞ instantaneous speed at time t
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1. Introduction

Vehicle delay is perhaps the most important parameter used by transportation professionals to
evaluate the performance of signalized intersections. This importance of vehicle delay is reflected
in the use of this parameter in both design and evaluation practices. For example, delay mini-
mization is frequently used as a primary optimization criterion when determining the operating
parameters of traffic signals at isolated and coordinated intersections. The Highway Capacity

Manual (HCM) further uses the average control delay incurred by vehicles at intersection ap-
proaches as a base for determining the level of service provided by the traffic signals located at the
downstream end of the these approaches (TRB, 1997).
The popularity of delay as an optimization and evaluation criterion is attributed to its direct

relation to what motorists experience while attempting to cross an intersection. However, delay is
also a parameter that is not easily determined. Teply (1989), for instance, indicated that a perfect
match between field-measured delay and analytical formulas could not be expected. The difficulty
in estimating vehicle delay at signalized intersections is also demonstrated by the variety of delay
models for signalized intersections that have been proposed over the years.
Despite differences between the proposed delay models, very little research has been concerned

with the consistency of delay estimates from one model to the other. This paper addresses this
problem by comparing the delays that are estimated by a number of analytical delay models,
including deterministic queuing, shock wave, steady-state stochastic, and time-dependent sto-
chastic delay models, and by further comparing these estimates to the delays that are produced by
a microscopic traffic simulation model. To achieve this goal, the paper first presents some
background material on vehicle delays at signalized intersection, followed by a description of the
various delay models that are being compared. Evaluations of the consistency of delay estimates
from these models are conducted by using them to evaluate delays on both under-saturated and
over-saturated signalized intersection approaches.

2. Delay at signalized intersections

Delay at signalized intersections is computed as the difference between the travel time that is
actually experienced by a vehicle while going across the intersection and the travel time this ve-

v vehicle arrival flow rate (veh/h)
vi traffic flow rate in zone i (veh/h)
xcðoÞ distance over which the residual queue grows over a signal cycle in over-saturated

conditions (km)
xmðoÞ maximum extent of the queue within a signal cycle with respect to queue size at the

beginning of the cycle in over-saturated conditions (km)
xmðuÞ maximum extent of queue within signal cycle in under-saturated conditions (km)
X v=c ¼ volume-to-capacity ratio
Xo volume-to-capacity ratio below which the overflow delay is negligible in capacity

guide models

3

TRB 396 No. of Pages 24, DTD=4.3.1

21 January 2003 Disk used SPS, Chennai
ARTICLE IN PRESS



UNCORRECTED
PROOF

hicle would have experienced in the absence of traffic signal control. The diagram of Fig. 1 further
indicates that the total delay experienced by a vehicle can be categorized into deceleration delay,
stopped delay and acceleration delay. Typically, transportation professionals define stopped delay
as the delay incurred when a vehicle is fully immobilized, while the delay incurred by a deceler-
ating or accelerating vehicle is categorized as deceleration and acceleration delay, respectively. In
some cases, stopped delay may also include the delay incurred while moving at an extremely low
speed. For example, the 1995 Canadian Capacity Guide for Signalized Intersections (ITE, 1995)
defines stopped delay as any delay incurred while moving at a speed that is less than the average
speed of a pedestrian (1.2 m/s).
Fig. 2 illustrates in more detail the distinction between deceleration, stopped and acceleration

delay. The figure illustrates the simulated trajectory and speed profiles of a number of vehicles
arriving at a signalized intersection during a single cycle. These simulated trajectories were ob-
tained using the INTEGRATION microscopic traffic simulation model (Van Aerde and Asso-
ciates, 2001). In the figure, it is first observed that only the first eight vehicles reaching the
intersection come to a complete stop. These vehicles need to stop either as a consequence of their
arrival during the red interval or during the green interval when the queue of vehicles that had
formed during the previous red interval has not yet fully dissipated. It is further observed that the
following three vehicles only experience deceleration and acceleration delay, as these vehicles
reach the intersection when all previously queued vehicles have already started to move and
therefore only need to slow down to maintain a safe distance with the vehicles ahead of them.
While most of the delay incurred at signalized intersections is directly caused by the traffic

signal operation, a fraction of the total delay is attributable to the time required by individual
drivers to react to changes in the signal display at the beginning of the green interval, to me-

Acceleration 
delay

Stopped delay

Total delay

Deceleration 
delay

Vehicle path without stop

Vehicle path with stop and gradual 
deceleration and acceleration

Vehicle path with stop and instantaneous 
deceleration and acceleration
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D
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ta
nc

e

Fig. 1. Definition of total, stopped, deceleration and acceleration delays.
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chanical constraints, and to individual driver behavior. In ideal situations, vehicles queued at an
intersection would start moving at their ideal speed immediately following the display of a green
signal. However, the first few drivers usually hesitate a few seconds before starting to accelerate,
thus causing additional delays to all queued vehicles. This delay in the start of the queue dissi-
pation process may even cause additional vehicles to join the queue before its complete dissipa-
tion. When acceleration occurs, the rate at which vehicles accelerate also depends on mechanical
constraints dictating the maximum feasible acceleration rate and on the rate at which individual
driver chose to accelerate.
As an example, Fig. 3 illustrates the simulated headways between successive stop line cross

times for the 12 vehicle arrivals of Fig. 2. As can be observed, the first vehicle crosses the stop line
4.3 s after the green initiation, while the second, third, and fourth vehicles follow with respective
headways of 3.0, 2.7 and 2.4 s. In this case, the larger headways observed at the beginning of the
interval are entirely caused by acceleration constraints. In the absence of such constraints, all
vehicles would have crossed the intersection with average 2-s headway. This would have resulted
in a 24-s reduction in the total delay incurred during the simulated signal cycle.
To account for the additional delays due to driver reaction time and vehicle acceleration

constraints, the operation of a signalized intersection is usually defined in terms of effective signal
intervals instead of actual intervals in delay estimation models, as shown in Fig. 4. Instead of
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Fig. 2. Simulated time–space diagram for typical traffic signal cycle.
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explicitly considering green, yellow and amber intervals and attempting to model variable de-
parture rates, delay calculations are typically performed by dividing the signal cycle into effective
periods of stopped and moving traffic within which constant traffic characteristics can be assumed.
The amount of difference between the actual and effective timings will thus depend on the as-
sumptions regarding driver reaction time at the beginning of the green interval and vehicle ac-
celerations.
A final element that may affect the delays incurred at intersection approaches is the randomness

in vehicle arrivals. If vehicles were to arrive at uniform intervals, the delays incurred by vehicles
within successive signal cycles would be identical, as there would then be an exact replication of
the arrival and departure patterns. However, under random arrival patterns, the number of ar-
rivals may fluctuate from one cycle to the other, thus resulting in different queue lengths. This may
in turn result in arrival demands that occasionally exceed the approach capacity, and therefore, in
higher delays. Finally, platooned arrivals may also occur in coordinated traffic signal systems. In
this case, the delay incurred by vehicles will depend on the degree to which the signals at successive
intersections are timed to provide a green indication during the periods of high arrival flow rate.
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Fig. 4. Queue modeling under deterministic queuing analysis.
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Fig. 3. Simulated headway distribution at beginning of green interval.
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3. Delay models for signalized intersections

3.1. Deterministic queuing model

Classic, deterministic queuing models can predict delay at signalized intersections for which the
number of vehicles that can be served during a green interval is greater than the number of arrivals
per cycle. These models view traffic on each intersection approach as a uniform stream of arriving
vehicles seeking service from a control device that provides a high service rate, but that also
periodically stops servicing vehicles to accommodate traffic on a conflicting movement.
To illustrate how deterministic queuing models predict delays, consider the upper diagram of

Fig. 5, which illustrate cumulative arrivals and departures at an under-saturated intersection.
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Fig. 5. Idealized cumulative arrivals and departures for under- and over-saturated conditions.
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From the figure, it can be determined that the area between the arrival and departure curves
represents the total uniform delay incurred by all vehicles attempting to cross an intersection
within a signal cycle. Assuming uniform arrivals and service times, i.e., a queuing system of the
type D/D/1, Eqs. (1) and (2) can then be derived to calculate the average uniform delay incurred
every signal cycle by vehicles attempting to cross the intersection. Eq. (2) is identical to what is
used in the HCM and the Canadian Capacity Guide for Signalized Intersections, as will be
demonstrated in the following sections:

d ¼ r2e
2 � C � s

s� v

� �
ð1Þ

d ¼
C 1� ge

C

� �2
2 1� X C

ge

� � ð2Þ

The model of Eq. (1) was generated by first assuming that vehicles arrive at a uniform and
constant rate. A consequence of this assumption is that the queue of vehicles that form at an
intersection operating in under-saturated conditions can always be cleared before the return of the
red signal. In reality, the randomness of traffic may cause some vehicles to remain queued at the
end of the green interval, especially at intersections operating near saturation. A second as-
sumption is that vehicles decelerate and accelerate instantaneously. As was illustrated in Fig. 1,
this assumption converts all deceleration and acceleration delays into equivalent stopped delay,
and thus allows a direct estimation of the total delay incurred by vehicles attempting to cross an
intersection. This assumption also implies that all drivers follow average driving patterns, in
addition to assigning all incurred delays to the intersection approach, even though some delay
occur in reality on the exit link when vehicles are accelerating. A final assumption is that vehicles
queue vertically at the intersection stop line. While this assumption does not represent a normal
queuing behavior and may not accurately represent the exact number of queued vehicle at a given
instant, it does not bias the delay estimation process over an entire queue formation and dissi-
pation process and is therefore a valid simplification when only considering delay estimations.
In over-saturation conditions, the number of vehicles reaching the intersection exceeds the

number of vehicles that can be served by the traffic signal. This causes a growing residual queue to
occur, as illustrated in the lower diagram of Fig. 5. The overflow delay associated with this sit-
uation corresponds to the area between the line representing the arrivals that can be served at
capacity and the line representing the actual arrivals. In this case, Eqs. (3) and (4) can be derived
to express the average delay over the number of vehicles discharged during the evaluation period
T .

do ¼
3600T
2

v
c

�
� 1

�
ð3Þ

do ¼ 900T ðX
�

� 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � 1Þ2

q �
ð4Þ

This model is time dependent, as the overflow delay increases with any increase in the evaluation
period. This is logical, as the residual queue keeps growing through the period. However, while the
formation of Eq. (4) expresses the total delay incurred during the time period T , it does
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not include the delay that is incurred by the vehicles that remain in queue after the conclusion of
T . It should be noted that Eq. (4) provides a general relationship that is valid for volume-to-
capacity ratios that are less than and/or greater than 1.0.

3.2. Shock wave delay model

Traffic flow can be characterized using flow, density and speed through an analogy with fluid
dynamics. Lighthill and Whitham (1955), as well as Richards (1956), made the first successful
attempts at such a description. They both demonstrated the existence of traffic shock waves and
proposed a first theory of one-dimensional waves that could be applied to the prediction of
highway traffic flow behavior. Eqs. (5) and (6) represent their model. The first equation defines the
relation between volume, density, and speed that has been developed from the application of fluid
dynamics theory. Using Eq. (5), Eq. (6) was then developed to describe the speed at which a
change in traffic characteristics, or shock wave, propagates along a roadway.

vi ¼ ki � ui ð5Þ

SWij ¼
vj � vi
kj � ki

ð6Þ

Using the model of Eqs. (5) and (6), Rorbech (1968) investigated the queue formation at in-
tersection approaches at the beginning of red intervals. Stephanopoulos and Michalopoulos
(1979) further investigated the dynamics of queue formation and dissipation at isolated inter-
sections using the flow conversation principle of Eq. (5). In another study, Michalopoulos et al.
(1980) analyzed traffic dynamics between signalized intersections and demonstrated the existence
of shock waves propagating downstream of an intersection caused by the periodic operations of
traffic signals. Michalopoulos et al. (1981) and Michalopoulos and Pisharody (1981) further de-
veloped a real-time control algorithm based on shock wave theory that minimizes total delay at
isolated intersections subject to constraints regarding maximum queue lengths on individual
approaches.
The main difference between shock wave and deterministic queuing models is in the way ve-

hicles are assumed to queue at the intersection. While queuing analysis assumes vertical queuing,
shock wave analysis considers that vehicles queue horizontally. As illustrated in Fig. 6, the
consideration of the horizontal extent of a queue enables the capturing of more realistic queuing
behavior and the determination of the maximum queue reach. This is not possible with deter-
ministic queuing models, as these models only track the number of queued vehicles, not their
spatial location.
In Fig. 6, the total travel time spent by all vehicles going through the intersection can be esti-

mated using the density and flow rate associated with each region. Since delay represents the added
travel time caused by the traffic signal operation, the total delay incurred by the traffic within one
signal cycle can be estimated by calculating the difference between the total travel time with traffic
signals and the total overall travel time without traffic signals, as demonstrated in Eq. (7).

D ¼ TTuðsignalsÞ � TTuðno signalsÞ ¼ 3600
X

i¼A;B;C

Aiki

"
�

X
i¼A;B;C

AikC

#
ð7Þ
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Finally, Eq. (8) can be derived to compute the average total delay incurred by individual ve-

 hicles due to the operation of traffic signals.

d ¼ 3600
jxmðuÞj
2 � v � C � ½re � ðkj � kaÞ þ ðtmðuÞ þ tcðuÞÞ � ðkd � kaÞ	 ð8Þ

with:

xmðuÞ ¼
1

3600
� �v � re � s

sðkj � kaÞ � vðkj � kdÞ

� 
ð9Þ

tmðuÞ ¼
v � re � ðkj � kdÞ

sðkj � kaÞ � vðkj � kdÞ
ð10Þ

tcðuÞ ¼ 3600
xmðuÞ

SWN

� 
¼ 3600jxmðuÞj �

ka � kd
v� s

ð11Þ

Similar to the deterministic queuing models, the shock wave delay model of Eq. (8) assumes
that vehicles follow a non-random and consistent path and that all vehicles accelerate and de-
celerate instantaneously. These two elements are represented in Fig. 6 by the constant interval
between the lines representing the trajectories of individual vehicles and by the sharp angles in the
trajectories when a vehicle passes from one traffic zone to another. Similar to Eq. (2), the con-
sequences of these two assumptions are that Eq. (8) only estimates uniform delay and assumes
that all delays are incurred on the approach side of an intersection. Finally, another common
element with Eq. (2) is the use of the effective signal interval durations to account for the start loss
and end gain.
Shock wave theory can also be used to estimate approach delays in over-saturated conditions.

In this case, delay estimation is similar to the under-saturated case. As an example, Fig. 7 illus-
trates the spatial and temporal evolution of a queue in the first two cycles of operation of an over-
saturated signalized approach as seen from the shock wave analysis. In the figure, the shock waves
labeled SWi, SWR and SWN have the same origin as the similar shock waves shown in Fig. 6. In
this case, however, the over-saturation creates a new shock wave, SWS, locating the back of the
area containing fully stopped vehicles after the return of the red indication.
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Fig. 6. Shock wave analysis for under-saturated approach.
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In Fig. 7, the areas 1, 3 and 4 all contain vehicles queued at the approach jam density, while the
areas 2, 5 and 6 are characterized by vehicles moving at saturation flow and with a density
corresponding to the discharge density. Based on these observations, it can be determined that the
area of regions 3 and 5 is identical to the area of regions 1 and 2. If the area of regions 4 and 6 is
known, the estimation of the delay incurred by vehicles on the approach is then only a matter of
knowing the number of cycles over which the estimation is performed.
Similar to the under-saturated scenario, Eqs. (12) and (13) can be derived from Fig. 7 to es-

timate the total travel time incurred by vehicles traveling on the over-saturated intersection ap-
proach with and without the traffic signals.

TToðsignalsÞ ¼ N
xmðoÞ

2

� �
re � kj

�
þ xmðoÞ þ xcðoÞ

2

� �
ge � kd

�
þ
XN�1

i¼1
i � xcðoÞ � ðre � kj þ ge � kdÞ ð12Þ

TToðno signalsÞ ¼ N � ka
xmðoÞ

2
re

�
þ ðxmðoÞ þ xcðoÞÞ

2
ge

�
þ
XN�1

i¼1
i � xcðoÞ � ðre þ geÞ � ka ð13Þ

with:

xcðoÞ ¼
C � ðv� sÞ
3600kj

� �
ð14Þ

Finally, the average over-saturation delay is computed as the difference between Eqs. (12) and (13)
divided by the number of vehicle departures within the analysis period T , as indicated in Eq. (15).

d ¼
N

xmðoÞ
2

� re � ðkj � kaÞ þ
ðxmðoÞþxcðoÞÞ

2
ge � ðkd � kaÞ

n o
s � ge � N=3600

þ
PN�1

i¼1 i � xcðoÞ � fre � ðkj � kaÞ þ ge � ðkd � kaÞg
s � ge � N=3600

ð15Þ

3.3. Steady-state stochastic delay models

While deterministic queuing and shock wave delay models both assume uniform arrivals,
stochastic delay models attempt to account for the randomness of vehicle arrivals. One of the
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Fig. 7. Shock wave analysis for over-saturated approach.
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fundamental and most often quoted models in the literature is the Webster model (Webster, 1958).
This model, which is expressed by Eq. (16), is comprised of three terms. The first term estimates
the average approach delay assuming uniform arrivals, which is consistent with Eq. (2) that was
derived earlier in the paper. The second term considers the additional delays attributed to the
randomness of vehicle arrivals. The third term is an empirical correction factors that reduces the
estimated delay by 5–15%, to be consistent with simulation results.

d ¼
C 1� ge

C

� �2
2 1� X C

ge

� �þ X 2

2vð1� X Þ � 0:65
c
v2

� �1=3

X 2þge
C ð16Þ

Following Webster�s work, other stochastic models were proposed. These include the models by
Miller (1963), Newell (1960, 1965), McNeil (1968), and Heidemann (1994). These models all share
the same general basic assumptions. First, they all consider that the number of arrivals in a given
time interval follows a known distribution, typically a Poisson distribution, and that this distri-
bution does not change over time. This implies that these models could not be applied to estimate
delays at intersections within a coordinated system, where arrivals are platooned as a result of
upstream traffic signals. Second, they all assume that the headways between departures from the
stop line follow a known distribution with a constant mean, or are identical. Third, while it is
recognized that temporary over-saturation may occur due to the randomness of arrivals, it is
assumed that the system remains under-saturated over the analysis period. Fourth, the system is
assumed to have been running long enough to allow it to have settled into a steady state. Fifth, all
these models still consider that vehicles decelerate and accelerate instantaneously and thus, that all
drivers behave similarly.

3.4. Time-dependent stochastic delay models for under-saturated and over-saturated conditions

A main consequence of the stochastic delay modeling described in the previous section is that
the estimated delays tend to infinity as traffic demand approaches saturation (v=c ratio of 1.0).
This was considered as a weakness by many researchers (Akcelik, 1988; McShane and Roess,
1990; Fambro and Rouphail, 1997). Fig. 8 illustrates how delay estimation models should the-
oretically behave under varying demand levels. For low v=c ratios, the models should produce
delay estimates that are similar to those produced by deterministic queuing delay models as-
suming constant uniform arrivals. As the load increases, a larger proportion of the delay is caused
by the randomness of vehicle arrivals and attributed to the inability to clear all queued vehicles in
some cycles. As the v=c ratio approaches 1.0, the models should finally not tend to infinity, but
should instead produce estimates that become tangent to the deterministic over-saturation model
of Eq. (2).
The concept of a general time-dependent delay model was originally conceived by Robertson

(1979) and further enhanced by Kimber and Hollis (1979) using the coordinate transformation
technique illustrated in Fig. 8. This technique transforms the equation defining a steady-state
stochastic delay model so that it becomes asymptotic to the deterministic over-saturation model of
Eq. (4). Although there is no rigorous theoretical basis for this approach (Hurdle, 1984), empirical
evidence indicates that these models yield reasonable results. This explains why numerous time-
dependent delay formulas based on the coordinate transformation technique have been proposed
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over the years (Brilon and Wu, 1990; Akcelik, 1981, 1988; Akcelik and Rouphail, 1993; Fambro
and Rouphail, 1997) and have been incorporated into a number of capacity guides, such as those
from the United States (TRB, 1994, 1997), Australia (Akcelik, 1981) and Canada (ITE, 1995).
The capacity guide delay models currently used in the United State, Australia and Canada are

all similar. The general form of these models is expressed by Eqs. (17)–(20), with Table 1 indi-
cating the specific values assigned to the parameters in each model.

d ¼ d1 � fPF þ d2 þ d3 � fr ð17Þ

with:
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Fig. 8. Stochastic time-dependent delay model concept.

Table 1

Capacity guide delay model parameters

Model Parameters

fr N m k I T Xo fPF

Australian (1981) 0 0 6 or 12a n=a n=a Variable 0:67þ sge=600 1.0

Canadian (1995) 0 0 4 n=a n=a Variable 0 1.0 or Eq. (20)b

HCM (1994) 0 2 4 to 16c n=a n=a 15 min 0 1.0, 0.85, or Eq. (20)d

HCM (1997) 1 0 8 0.04–0.50e 1.0f Variable 0 Eq. (20)
a 12 for random arrivals; 6 when platooning occurs.
b 1.0 for isolated intersections; Eq. (20) in other cases.
c Function of arrival type (16 for random arrivals, 12 for favorable or non-favorable progression, 8 for very poor or

highly favorable progression, 4 for very unfavorable progression).
d 1.0 for pre-timed, non-coordinated signals; 0.85 for actuated, non-coordinated systems; Eq. (20) for coordinated

systems.
e 0.50 for pre-timed signals; 0.04–0.50 for actuated controllers.
f 1.0 for isolated intersection only.
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The models defined in Table 1 all assume steady-state traffic conditions. They estimate delays
under stochastic equilibrium conditions, when the arrival and departure flow rates have been sta-
tionary for an indefinite period of time. They also assume that the number of arrivals in a given
interval follow a Poisson distribution that remains constant over time, and that the headways be-
tween departures have a known distribution with a constant mean value. Finally, these models do
not include all of the delay incurred by either arriving or discharged vehicles during the control
period considered. Thesemodels only include the delays incurred up to the end of the control period
and do not consider the additional delay that is incurred as the queue is being served. However, it
can be demonstrated that accounting for the additional delay that is incurred during the decay of the
queue and averaging over all the vehicle departures (in this case the arrival rate), the average delay is
the identical. Specifically, if it is assumed that there are no vehicle arrivals at the conclusion of the
analysis period, then the average delay can be computed using Eq. (21), which is identical to Eq. (4).

d ¼
0:5ðv� cÞ � 3600T � T þ ðv�cÞT

c

h i
T � v ¼ 1800ðv� cÞT

c
¼ 900T ðX

�
� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � 1Þ2

q 
ð21Þ

Similar to the models presented in the previous sections, the models of Table 1 were developed
assuming instantaneous accelerations and decelerations to simplify the delay estimation. In this
case, however, a number of relations have been proposed to estimate the proportion of stopped
and acceleration/deceleration delays. For instance, the 1994 HCM estimates the stopped delay at
76% of the total estimated delay. Both Teply (1989) and Olszewski (1993) agreed that this factor
was incorrect for very low and very high signal delays and proposed alternative evaluation
methods. Teply first recommended a multiplicative adjustment factor that varies 0.36–0.83 and is
a function of the duration of the red interval, which was later adopted in the 1995 Canadian
Capacity Guide for Signalized Intersections, while Olszewski recommended a subtractive ad-
justment factor varying with the approach speed.
The main differences between the various capacity guide models are in the way they attempt to

consider non-Poisson arrivals:

(a) In the Australian model, adjustments for the type of arrivals are considered by simply altering
the value assigned to the parameter m. A value of 12 is used for random arrivals, while a value
of 6 is used for platooned arrivals.

(b) In the 1994 HCM model, both the parameter m and the progression factor fPF are modified.
In this case, values ranging from 4 to 16 are used for the parameter m, while alternative sug-
gested values for the progression factor fPF consider not only varying arrival patterns, but also
the use of pre-timed or actuated controllers at coordinated and non-coordinated intersections.

14
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(c) In the 1995 Canadian model, the type of arrivals only affects the progression factor fPF as the
parameter m is assigned a fixed value of 4.

(d) The 1997 HCM model fixes the parameter m at 8, but introduces the parameters k and I to
explicitly consider the effect of signal controller types and of arrival patterns affected by up-
stream signalized intersections. As a result, the product mkl, which is always equal to 4.0 in
the Canadian model, could vary in this case from 0.32 to 4.0.

In addition to the above differences, the 1994 HCM model is the only one to assign a non-zero
value to the parameter n. This parameter was added to compensate for the model�s assumptions of
a zero initial queue and fixed 15-min analysis period. While the 1997 HCM model reassigns a
value of zero to the parameter n, this model is also the only one to define a non-zero value to the
parameter fr and explicitly considers the residual delays for over-saturation queues that may have
existed before the analysis period.

3.5. Microscopic simulation delay models

Microscopic traffic simulation models have the ability to track individual vehicle movements
within simulated street networks. Vehicle tracking is usually done using car-following, lane-
changing, and gap-acceptance logic. This allows such models, among other things, to consider
virtually any traffic conditions, ranging from highly under-saturated to highly over-saturated
conditions.
Because of their ability to track the movements of individual vehicles, microscopic simulation

models can determine the delay incurred by an individual vehicle while traveling a network of
links with different characteristics by comparing simulated and ideal travel times. No specific
formulas are therefore required to evaluate uniform and overflow delay, or delays in under-sat-
urated and over-saturated traffic conditions, thus allowing for the evaluation of complex traffic
situations. In addition, the ability to record vehicle speed and position on a second-by-second
basis further allows the recording of speed profiles and the direct estimation of deceleration,
stopped and acceleration delays.
For this study, the INTEGRATION microscopic traffic simulation software is used to obtain

simulated delay estimates. This simulation model features an integrated, dynamic traffic simula-
tion and traffic assignment model. Within the model, delay is estimated for each individual vehicle
by calculating, for each traveled link, the difference between the vehicle�s simulated travel time and
the travel time that the vehicle would have experienced on the link at free speed, as expressed by
Eq. (22) (Rakha et al., in press).

D ¼
Z T

t¼0

uf � uðtÞ
uf

� 
dt ð22Þ

4. Test scenario

To evaluate the consistency of delay estimates from the various models presented in this paper,
delay evaluations were carried out for the sample network of Fig. 9 using the INTEGRATION
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microscopic traffic simulation software and the deterministic, shock wave, Webster and capacity
guide delay models defined by Eqs. (2), (4), (8), and (15)–(17), respectively. The example of Fig. 9
features a single-lane intersection approach at a fixed-timed traffic signal operating with a 60-s
cycle length and a 30-s effective green interval. A 1-km exit link is also included to allow the
INTEGRATION model to capture the delays incurred by vehicles accelerating as they leave the
intersection and to compile total approach delay, as is done in the analytical models.
For each model, delay evaluations were specifically carried out for v=c ratios varying between

0.1 and 1.4. This allowed evaluations to be conducted for a range of traffic conditions extending
from highly under-saturated to highly over-saturated conditions. For each scenario, vehicle ar-
rivals were further assumed to follow a random process with a constant average arrival rate. For
the analytical models, this only required a single application of the equations defining each model.
For the INTEGRATION model, however, 10 replications were made of each scenario to account
for the stochastic nature of the model�s simulation process. Thus, unless otherwise noted, the
results from the INTEGRATION simulation model are an average of 10 simulations, while the
results from the analytical models are the delays reported by Eqs. (2), (4), (8), and (15)–(17).
Finally, to ensure that appropriate comparisons are made for all v=c scenarios considered,

particularly in the over-saturation range, simulation were only carried out for a 15-min control
period. This 15-min period was imposed by the fact that some of the time-dependent delay models
considered, namely the 1994 HCM model, require a 15-min analysis period.

5. Test results

Figs. 10 and 11 illustrate the results of the delay estimations that were carried out for the
example of Fig. 9. Fig. 10 illustrates the delays that were estimated over the entire range of v=c
ratios considered, while Fig. 11 provides a more detailed look at the delay estimates for v=c ratios
below 1.0.

2 km 1 km

Signal operation

• Cycle time: 60 s
• Effective red interval : 30 s
• Effective green interval: 30 s

Simulation parameters

• Simulation time: 15 min
• Saturation flow: 1800 veh/h
• Free-flow speed: 60 km/h

Fig. 9. Delay evaluation scenario.
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Fig. 10. Delay estimates for under- and over-saturated conditions.
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Fig. 11. Delay estimates for under-saturated conditions only.
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5.1. Consistency of delay estimates for under-saturated conditions

In Fig. 11, it is first observed that there is a general agreement between all the analytical delay
models considered when these are applied to the analysis of signalized intersections with very low
v=c ratios. However, it is also observed that this agreement tends to decrease with increasing v=c
ratios. For example, the difference between the minimum and maximum delay estimates from the
various analytical models does not exceed 6.0% for v=c ratios below 0.2. For a v=c ratio of 0.4, the
maximum difference increases to 14.4%, while differences exceeding 30% are observed for v=c
ratios above 0.6.
Fig. 11 further illustrates that the deterministic queuing and shock wave models always produce

the lowest estimates. This is due to the fact that these two models consider only uniform arrivals.
As a result, these models cannot consider the potential for additional delays that arise from the
probability of having temporary over-saturation delays due to surges of arriving vehicles. It is also
observed that the deterministic and stochastic models produce relatively similar delay estimates at
very low v=c ratios. This is an indication that the randomness of vehicle arrivals can be neglected
when estimating delays for highly under-saturated conditions and that the use of either deter-
ministic or stochastic models is valid in such conditions.
A more detailed analysis of Fig. 11 further reveals that the delays predicted by the Webster,

1995 Canadian Capacity Guide and 1997 HCM models are virtually identical for v=c ratios below
0.8. Above this ratio, the delays from the Webster model tend towards infinity for v=c ratios
approaching 1.0. This is a well-known behavior of the model and other similar steady-state
stochastic models that invalidates their use when the v=c ratio tends to 1.0. In comparison, the
delays estimates at a v=c ratio of 1.0 from the various capacity guide models oscillate between 43.7
and 45.0 s per vehicle, while the average delays estimated by the INTEGRATION model ap-
proach 38.8 s per vehicle.
It should be noted at this point that although the vehicles are generated randomly at their

origin within the INTEGRATION software, the level of randomness during a simulation is re-
duced as a result of the car-following behavior that is applied while vehicles are traveling along a
link. On one hand, the car-following logic allows a vehicle with a large distance headway with the
vehicle in front of it to speed up to reduce the headway. On the other hand, the logic forces a
vehicle that has been generated close to its predecessor to slow down to maintain a safe car-
following distance. Consequently, it is expected that the simulation delays would be slightly less
than the random delay estimates.
While a general agreement exists between the various capacity guide delay models in the trend

of increasing delays with increased v=c ratios, differences are also observed. The main differences
are more particularly found with the Australian Capacity Guide and 1994 HCM models, which
both consistently produce lower delay estimates than the 1997 HCM and 1995 Canadian Capacity
Guide models. These differences are primarily due to the coordinate transformation technique
that was applied in each case to produce a model providing delay estimates that are asymptotic to
the deterministic over-saturation delay model of Eq. (2). The 1995 Canadian Capacity Guide and
1997 HCM models both produce identical results, as these two models are similar in this case. As
explained earlier, the main differences between these two models are in the values assigned to the
parameters fr, m, k, and l in Eqs. (17) and (19). In this case, however, the parameter fr has no
impact since it is assumed that no over-saturation queue exists before the start of the analysis
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period. Both models also exhibit the same value for the mkl product in Eq. (19). While the Ca-
nadian model fixes the value of m at 4 and ignores the parameters k and l, the HCMmodel assigns
a value of 8 to the parameter m, a value of 0.5 to the parameter k to account for pre-timed signal
operation, and ignores the parameter l.
The analysis of Fig. 11 further reveals that the average delay estimates from the INTEGRA-

TION simulation model are in general agreement with the estimates from the various capacity
guide models. This agreement is particularly evident in Fig. 12, which superimposes the delay
estimates from the individual INTEGRATION simulation runs to the corresponding capacity
guide delay estimates. As can be observed, the estimates from the four capacity guide delay
models all fall within the range of delays obtained from the individual simulation runs. This result
thus either validates the under-saturated delay models defined in the various capacity guides, or
the INTEGRATION simulation process, depending on the point of view taken.
In Figs. 11 and 12, while the estimates from the various analytical models generally increase

monotonically with higher v=c ratios, it is observed that there is more variability in the delay
estimates from the INTEGRATION simulation model than from the analytical models, partic-
ularly at low v=c ratios. A portion of this variability is attributed to the stochastic nature of the
INTEGRATION simulation process, while another portion is attributed to the discrete nature of
the simulation process, which only considers complete vehicles and not fractions of vehicles.
A main effect of considering discrete vehicle departures is to increase the sensitivity of delay

estimates to specific vehicle arrival times. As an example, Table 2 computes the delay associated
with three arriving flows for the example of Fig. 9. In all cases, the vehicles arrive at the inter-
section with a constant 5-s headway and depart at a constant 2-s saturation flow headway. The
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Fig. 12. Comparison of simulated and capacity guide delay estimates.
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only difference between the arrival patterns is in the time at which the first vehicle arrives relative
to the start of the effective green. In the second cycle, vehicle arrivals are all offset by 1 s relative to
the first cycle, while arrivals in the third cycle are offset by 4 s. As can be observed, a 1-s offset is
sufficient in this case to decrease the estimated average delay per cycle from 13.8 to 12.9 s, while a
four-second offset further results in a 10.50 s average delay. If delay calculations were made using
the deterministic queuing or shock wave models of Eqs. (2) and (8), the estimated average delay
would then be 12.5 s for all three cycles. In the case of the Webster and capacity guide models,
similar estimates would also be obtained from all cycles, since these models only consider average
flow rates and traffic patterns.
Fig. 13 provides a more detailed look at the variability of simulated delay estimates. The figure

plots for each v=c ratio the standard deviation and coefficient of variation (COV) (standard de-
viation divided by mean) of delay estimates that are obtained from the ten repetitions per v=c
ratio. As can be observed, significant variability as measured by the COV in delay estimates is
observed both at low v=c ratios and around a v=c ratio of 1.0. While the literature documents the
higher variability in delay as the v=c ratio approaches 1.0, it does not describe the high variability
that is observed for extremely low traffic demands.
The two observed peaks of high COV that are observed in Fig. 13 can be attributed to two

factors. First, at very low v=c ratios there are larger temporal headways between successive ve-
hicles and thus the standard deviation is higher than the case of higher v=c ratios. This provides
greater opportunities for vehicle spacing to be varied, as was demonstrated earlier in Table 2. As
traffic demand increases and the average temporal headway between successive vehicles decreases,
the impact of the vehicle departure randomness on delay estimates decreases, thus explaining the
reduced variability that is observed for v=c ratio less than 0.7. In addition, given that the mean
delay at low v=c ratios is very small and that the COV is computed as the ratio of the standard
deviation to the mean, it is not surprising to observe higher coefficients of variation at very low v=c
ratios.

Table 2

Sensitivity of delay estimates to arrival patterns

Vehicle Cycle 1 Cycle 2 Cycle 3

Arrival Departure Delay Arrival Departure Delay Arrival Departure Delay

1 0 30 30 1 30 29 4 30 26

2 5 32 27 6 32 26 9 32 23

3 10 34 24 11 34 23 14 34 20

4 15 36 21 16 36 20 19 36 17

5 20 38 18 21 38 17 24 38 14

6 25 40 15 26 40 14 29 40 11

7 30 42 12 31 42 11 34 42 8

8 35 44 9 36 44 8 39 44 5

9 40 46 6 41 46 5 44 46 2

10 45 48 3 46 48 2 49 49 0

11 50 50 0 51 51 0 54 54 0

12 55 55 0 56 56 0 59 59 0

Total delay 165 Total delay 155 Total delay 10.5

Average delay 13.8 Average delay 12.9 Average delay 126
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Another element to consider when interpreting the above results is the fact that the INTE-
GRATION car-following logic reduces the level of randomness of vehicle arrivals. As was ex-
plained earlier, the logic reduces differences in vehicle spacing. On one hand, the logic allows a
vehicles with large distance headway with the vehicle in front of it to speed up to reduce the
headway. On the other hand, the logic forces a vehicle that has been generated close to its pre-
decessor to slow down to maintain a safe distance.
For v=c ratios above 0.7, signal cycle over-saturation is the main factor responsible for the

increase in delay variability. As demand approaches saturation, there is an increased probability
that surges in vehicle arrivals may cause temporary over-saturation of a signal cycle. Since higher
delays typically result from over-saturated cycles, an increased variability in delay estimates thus
results as the probability of having over-saturated cycles increases. This variability reaches its
peak at a v=c ratio of 1.0, as demand fluctuations then create equal probabilities for over-satu-
rated and under-saturated cycles. Finally, the variability decreases again as the v=c ratio increases
past 1.0 as the increasing congestion and number of over-saturated cycles constrain the freedom
of movements of vehicles and lead to more uniform flow patterns.

5.2. Consistency of delay estimates for over-saturated conditions

For the over-saturated domain, the results of Fig. 10 indicate that there is a general agreement
between the INTEGRATION simulation model, the 1981 Australian Capacity Guide, the 1995
Canadian Capacity Guide and the 1997 HCM delay models. For these four models, the delay
estimates gradually approach the delays predicted by the deterministic over-saturation model of
Eq. (2) as the v=c ratio increases. The only exception to this trend is for the 1994 HCM model,

0

2

4

6

8

10

12

14

16

18

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Volume-to-capacity ratio (v/c)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Coefficient of variation

Standard deviation

st
an

da
rd

 d
ev

ia
tio

n
C

oefficient of variation

Fig. 13. Coefficient of variation of simulated delay estimates over range of traffic conditions considered.

21

TRB 396 No. of Pages 24, DTD=4.3.1

21 January 2003 Disk used SPS, Chennai
ARTICLE IN PRESS



UNCORRECTED
PROOF

which does not produce a delay curve that is asymptotic to the deterministic over-saturation
model. This behavior is explained by the fact that this model is the only one to include the X 2

adjustment parameter in Eq. (19), as summarized in Table 1. As explained earlier, this parameter,
which was later removed in the 1997 model, was introduced to compensate for the assumption of
zero initial queue and fixed 15-min analysis period.
In this case, Fig. 12 again emphasizes the consistency of delay estimates from the INTE-

GRATION, the 1981 Australian Capacity Guide, the 1995 Canadian Capacity Guide and the
1997 HCM delay models. Similar to the under-saturation case, it is observed that the delays es-
timated from these three capacity guide models fall within the range of delays estimated by the
INTEGRATION simulation model. In this case, it is interesting to note that the INTEGRA-
TION model always produces the lowest estimates and that the difference between the various
models dissipates as the v=c ratio increases. The lower delay estimates from the INTEGRATION
software can be attributed to the lower level of randomness that results from travel from the entry
node to the traffic signal stop line. More consistent results between the various models are ob-
served as the v=c ratio increases since the randomness in vehicle arrivals is then gradually ab-
sorbed by the queue formed upstream of the traffic signal, thus creating more uniform traffic
conditions across the various models.

6. Conclusions

This paper compared the delays predicted by the INTEGRATION microscopic traffic simu-
lation software and a number analytical delay models on a one-lane approach to a pre-timed
signalized intersection approach for traffic conditions ranging from under-saturation to over-
saturation. The analytical models that were compared were representative of deterministic
queuing, shock wave, steady-state stochastic and time-dependent stochastic delay models. For the
steady-state stochastic models, the Webster model was used as an example. For the time-de-
pendent stochastic models, the models defined in the 1981 Australian Capacity Guide, the 1995
Canadian Capacity Guide and the 1994 and 1997 HCM were considered.
The delay estimates predicted by each model were compared over a range of v=c ratios ex-

tending from 0.1 to 1.4 to assess their consistency. Over this range, the delay models from the 1981
Australian Capacity Guide, the 1995 Canadian Capacity Guide, the 1997 HCM, and the IN-
TEGRATION microscopic traffic simulation model produced delay estimates that generally agree
with each other. Depending on the point of view considered, it can be concluded that these results
either validate the delay models currently used in the capacity guides from the United States,
Canada and Australia, or validates the INTEGRATION microscopic simulation software. In
addition, it was further determined that all the delay models considered in this paper produce
relatively consistent delay estimates when applied to the analysis of under-saturated signalized
intersections with v=c ratios below 0.6, thus indicating the validity of the use of all these models in
such conditions.
While the study indicates a strong consistency between the time-dependent stochastic delay

models used in the more recent capacity guide for signalized intersections and the delays estimated
by the INTEGRATION microscopic traffic simulation model for the case considered, efforts
should be made to evaluate this consistency for more complex situations. In particular, the
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consistency of delay models should be evaluated for multi-lane approaches, intersections con-
trolled by actuated controllers, and intersections where non-random vehicle arrivals occurs as a
result of signal coordination with upstream intersections. The impact of varying driver behavior
should also be investigated, as this may impact the saturation flows used in the various delay
models, as well as the approach speeds and amount of time lost every cycle due to driver reaction
time.
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