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ABSTRACT: 

This work addresses the traffic network design problem when day-to-day uncertainties in travel demand 

and link capacity are taken into account. Specifically, this work proposes a network design formulation 

that uses a strategic behavior approach, where total demand and link capacity are treated as random 

variables and a strategic user equilibrium results in fixed equilibrium link proportions. The bilevel model 

is formulated, system performance metrics derived, and then a solution method is developed based on a 

tailored genetic algorithm. Results under varying levels of volatility reflect possible suboptimal project 

selection when using a deterministic modeling approach. 

 

 

KEYWORDS: network design problem; strategic traffic assignment; day-to-day demand uncertainty  
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1. INTRODUCTION 

One of the primary purposes of transport planning models is the ranking and evaluation of infrastructure 

design projects. Planning tools, such as traffic assignment models based on the Wardropian equilibrium 

principle, can capture the effect that improvements in the network have on route choice in vehicle 

travelers. However, traditional models do not account for the inherent uncertainty in these methods, 

leading to an important question for researchers and practitioners alike: how do optimal project designs 

change in the face of non-deterministic network parameters? 

Uncertainties in network modeling are well-established phenomena in traffic settings. However 

traditional equilibrium-based network design approaches are primarily deterministic and therefore make a 

single prediction that is usually interpreted as an average, rather than any specific manifestation of 

network conditions. While there are important reasons to use such traditional models (model stability, 

uniqueness, tractability), this approach will almost certainly misrepresent real network conditions, 

particularly in networks that deviate significantly from the average.  

To complicate the matter, network assignment models are often used to evaluate the effects of 

changes in the network, such as infrastructure design. It follows that deviant model behavior, particularly 

that resulting from uncertain demand and capacity, is important to capture due to its unpredictable impact 

on design projects. 

This paper focuses on the network design problem (NDP) wherein the planner seeks the optimal 

links to which to add capacity to improve a stated network performance measure. Specifically, this work 

applies a novel strategic-based assignment approach (1), in which total travel demand in treated as a 

random variable. Additionally, we consider the day-to-day volatility in link capacity, due to factors such 

as weather conditions or driving behavior, by incorporating the model extension (2) and treating link 

capacity as a random variable. The contribution of this work is as follows: 

 We propose a novel formulation for the NDP that integrates the strategic user equilibrium 

(StrUE) model to capture user behavior in the face of day-to-day variation in demand and the 

strategic user equilibrium with capacity (StrUEC) model to represent the day-to-day variation in 

link capacity; 

 Results examine the impact of uncertain modelling parameters on design project selection and 

evaluation; we highlight the differences in project selection when accounting for no uncertainty, 

day-to-day demand uncertainty, and day-to-day capacity uncertainty. 

 

2. BACKGROUND 

This work focuses on incorporating two sources of uncertainty into the network design problem. While 

accounting for different sources of uncertainty makes the NDP still more complex, it is essential that 

researchers develop approaches to quantify how those uncertainties impact infrastructure projects. 

Network design is an active field in the research and as such, only selected relevant works are discussed 

here; see Yang and Bell (3) for an overview and historical developments, Chen et al (4) for a review of 

uncertainty in the NDP specifically, and Wismans et al (5) for an in depth review of NDP applications 

using a dynamic approach.   

Most generally, network design is conceptually simple: the problem of finding the optimal 

location(s) to enhance a network given a limited “budget.” In this work, such enhancements are generally 

vehicle capacity improvements that can have a variety of interpretations, from the discrete additions (e.g., 

lanes, roads) to projects that may have a more continuous nature (e.g., optimized signal timing plans, 

widening of shoulders, elimination of parking, etc).  The NDP is traditionally formulated as a bi-level 
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mathematical programming problem, where the upper level represents the “planner’s” perspective that 

measures the impact in the network due to the change, and the lower level represents the users’ reaction to 

those changes (3). Due to the nonconvex cost function resulting from the addition of capacity, the NDP 

can’t be solved by traditional optimization techniques and heuristic methods are necessary. A few 

previous examples of bilevel network design formulations include multi-objective signal timing (6), 

accounting for long term demand uncertainty (7), total travel time reliability with stochastic route choice 

(8), optimal toll pricing strategies (9), examining the impact of environmental justice considerations (10), 

and minimizing emissions (11 and 12).  

Uncertainty in transport network modeling is usually viewed as arising from demand, capacity, 

and user behaviour. Previous research has looked at the strategic behavior from users in terms of 

hyperpaths that are formed due to the possibility of being unable to enter capacitated links (13). A recent 

work by Xie and Liu provides a background of the stochastic user equilibrium approach and introduces a 

new approach based on behavioral inertia, a reflection of how likely a traveler is to deviate from a chosen 

route (14). The current work also employs strategic user behavior in the sense that people will choose a 

route based on  a range of possible network conditions they may encounter during travel, but the 

underlying modelling approach is based on the strategic user equilibrium (StrUE) introduced by Dixit et 

al (1). StrUE finds equilibrium flow proportions based on expected path costs, and is detailed in Section 

3.1. The output from the strategic assignment approach is link volumes that will vary from day-to-day, 

thus accounting for short-term demand uncertainty that users face making day-to-day route choice 

decisions. Other approaches accounting for the strategic based behaviour include an extension to capacity 

uncertainty (2), the design problem of setting optimal tolls (15), and dynamic optimal routing for discrete 

design scenarios (16).   

 This work extends the strategic assignment model to form the subproblem for a network design 

scenario focused on link capacity additions. Previous work has examined the impact of short-term 

demand uncertainty and link capacity uncertainty, but rarely in combination. This work proposes a novel 

approach to address this gap.  

 

3. MODEL FORMULATION 

This work captures users’ reactions to day-to-day demand fluctuation using the strategic assignment 

model described in Section 3.1. However, the “capacity” of links as employed by most static traffic 

assignment approaches is another non-deterministic quantity that users consider when selecting a route 

and should be included in the evaluation design projects. Therefore, Section 3.2 describes the strategic 

behavior approach that accounts for the variability in link capacity. Finally, Section 3.3 formulates the 

bilevel network design model incorporating strategic route choice assignment. 

 

3.1 Strategic user equilibrium (StrUE) model 

The core assumption of strategic behavior route choice model is that users have knowledge of day-to-

day demand distribution, although on any given day they do not know what conditions they will 

encounter during travel. Therefore, they employ a simple strategy: they choose the expected shortest cost 

path and they do not deviate from this path regardless of experienced conditions.  

 The modelling implications of this behavior is a mathematical equilibrium based a fixed 

assignment pattern of link proportions where the expected cost for the proportion of total travelers on 

each used route between an origin and destination is equal. However, the day-to-day demand is a 

random variable. Thus, while link proportions remain fixed, total demand changes, resulting in 
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flows that vary according to a set of demand realizations, reflecting disequilibrium similar to 

what is observed in traffic networks. 

The strategic approach has two main advantages: it accounts for demand uncertainty, which adds 

realism as compared to deterministic models, and due to the relative simplicity of its implementation, the 

StrUE approach can be applied to practically sized problems. Additionally, the strategic approach 

quantifies the variance in link travel time. This variance can be interpreted as a measure of reliability. In a 

network design setting, the planner can consider link variance and variance in total system travel time as 

part of the decision making process.  

Consider a directed graph   (   ) where   is the set of nodes (vertices) and   is the set of 

links (edges), where an individual link is indexed by  . Let     index an origin and     index one 

destination from the set of destinations. Let   be the set of origin-destination pairs connecting origins   

with destinations  , where     indicates the proportion of total demand between origin   and destination 

 . The total demand is a random variable   with associated probability distribution  ( ). The travel cost 

on a link is   (   ), which is a function of the proportion of the total flow on the link    ∑        , 

and  . Furthermore let     be the set of paths connecting origin   and destination  , and let   
   represent 

the proportion of the total travel demand on that path. Finally, let     
   be the incidence matrix that is 

equal to 1 if link   is on path   between origin   and destination   and 0 otherwise. The StrUE model as 

previously introduced may then be written as: 

              

          (   )  ∫ ∑∫   (   )
  

    

 

 

 ( )     (1)  

            

∑   
  

     

                                                                     (2)  

  
                                                                              (3)  

   ∑∑ ∑   
      

  

           

                                                            (4)  

The StrUE model formulation provides a straightforward framework that can be applied to practically 

sized problems by modifying well established solution methods. As discussed in Duell et al (1), to ensure 

uniqueness of link flows, for each origin-destination, path flow proportion is assumed to be equal under 

all demand scenarios. Therefore, the equilibrium flow on each path will vary in a proportional manner 

when the total origin-destination demand varies. The system performance metrics in the strategic 

approach can be found through analytical derivations or simulation-based sampling methods, and will be 

detailed in the next section.  

 

3.2 Strategic user equilibrium with capacity uncertainty (StrUEC) model 

In both the deterministic approach and the StrUE model, capacity serves as a model input and assumed to 

be a fixed value. Capacity is inherently a static representation of a dynamic concept. It is often intended to 

be a proxy to capture the effects of congestion, where the travel time increases as the ratio of flow to 

capacity on a link increases. In spite of this, the capacity of a road will fluctuate due to factors such as 
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driving behavior and adverse weather conditions, phenomena that is captured in this work by the concept 

of “day-to-day” capacity. Drivers may consider this fluctuating capacity when making route selections; 

therefore, it is important to consider its impact on network design project rankings. 

 The StrUEC model, introduced by Wen et al (2), accounts for the day-to-day volatility in capacity 

and vehicle users reaction to knowledge of that volatility. In the StrUEC approach, we assume that the 

inverse capacity        on each link is a random variable with a known probability distribution   (    ). 

Vehicle users have knowledge of this capacity distribution and choose the expected least cost route, 

where the expected cost is based on the probability distribution of both the demand and the capacity 

distribution on each link, assumed to be independent from one another. Wen et al (2) show the uniqueness 

of the model assignment solution. 

Continuing the notation previously introduced, the StrUEC model seeks the set of link flow 

proportions that satisfy the mathematical program in Equation 5. The difference between the objective 

function for the StrUE model in Equation 1 and the StrUEC model in Equation 5 is that the expected cost 

is a function of flow proportion, total demand, and link capacity.  

               

           (   )  ∫ ∫ ∑∫   (        )
  

    

 

 

 ( )  (    )           
 

 

 (5)  

            

Constraints [2] – [4]  

In traditional network design, the capacity of a link is increased in vehicles per hour, which will lower 

total system travel time and make the link more attract to drivers. However in network design with 

uncertain capacity, the expected capacity of the link, which is one of the parameters of the distribution of 

the link capacity   (    ), is increased because capacity is not a deterministic quantity. There might be 

other possibilities where the coefficient of variation or the variance of the capacity is decreased (for 

example policy targeting illegal parking practices). For simplicity, the most straightforward interpretation 

is utilized in this work. Alternate possibilities will be the topic of future research. 

 

3.3 Network design formulation 

The network design problem with uncertainty is formulated as a bilevel nonlinear mathematical 

programming problem.  The upper level seeks to minimize the planning objective accounting for 

volatility in the network, for example, expected total system travel time or standard deviation of travel 

time, both of which are a function of proportion of flow on each link and capacity changes in the 

transportation network. The lower level represents drivers’ reactions to changes in the road network, 

modelled by the StrUE or StrUEC approaches presented in Section 3.1 and 3.2. 

This work focuses on ranking and evaluating design projects in a traffic network, although 

principles similar to those discussed here would apply to other NDP applications. Let   be a 

predetermined set of possible network design scenarios indexed by  , each of which is defined by the 

amount of capacity or expected capacity   to add to some number of links such that the total cost of 

improving the links is below the budget   in order to minimize objective    .    
  is a binary decision 

variable equal to 1 if link (   ) is an optimal location to add capacity in project scenario  . Note that links 

which are not available to be improved by the amount      will be constrained such that    
   .  
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Additionally, the binary constraint on    could be relaxed, in which case this would be a continuous 

network design formulation. The binary approach was utilized here because it puts realistic bounds on the 

solution space, which is already quite large. 

The upper level problem represents the “planner’s” perspective, who seeks the optimal links to 

which to add capacity for each design scenario in order to minimize an objective     
 . The upper level 

decision variables also impact the lower level problem, which is the strategic traffic equilibrium approach 

that accounts for different sources of network uncertainty.  For each design scenario     
 , the formulation 

to minimize the objective   follows: 

           (6)  

subject to  

∑    
    

   

 (7)  

  
  {   }        (8)  

subject to  

                (9)  

The benefit of this formulation is that the lower level StrUE model can be treated independently from the 

design problem, making it conducive to heuristic methods such as genetic algorithms. 

 

The defining point of this formulation is which objective function should be utilized for Equation (6). 

There are two basic system objectives that are of interest in this work: expected total system travel time   

and the standard deviation of total system travel time    . Due to the assumptions in the strategic 

assignment model, there are two approaches to solving for these objective measures. The first is to use the 

analytical equations that are derived based on a travel cost function and the distribution of the random 

variables. The expression for    is given in Equation 10. 

   ∫ ∑    (     
 ) ( )  

   

 

 

 (10)  

The analytical expression for the total system travel time where link capacity is a random variable given 

in Equation 11.  

    ∫ ∫ ∑    (          
 )  (    ) ( )  

   

 

 

 

 

 (11)  

In this work, the   symbol indicates that a quantity is analytically derived. Alternatively, a quantity can be 

found using a simulation procedure that involves sampling from the distribution of the random variable, 

which is denoted as  . The simulation based expected total system travel time and standard deviation are 

   and   . A procedure to find these values is outlined in (1). 

 The variance of total system travel time is denoted as   , and it is the expected value of the 

square of the total system travel time minus the square of the expected value of total system travel time. 
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Note that expectation is denoted   ( ) in this work. Equations 12 and 13 contain the    for StrUE and 

StrUEC models respectively. The work uses the standard deviation of total travel time      √   in 

order to be more directly comparable to   . 

     ((∑    (     
 )

   

)

 

) (  (∑    (     
 )

   

))

 

 (12)  

      ((∑    (          
 )  (    )

   

)

 

)  (  (∑    (          
 )  (    )

   

))

 

 (13)  

The next section outlines the assumptions to provide tractable forms of equations (10) – (13), as well as 

the solution method for the bilevel program proposed in equations (6) – (9). 

 

4. SOLVING THE MODEL 

This section details the assumptions and methodology to solve the bilevel network design model 

presented in Section 3.3. The upper level of the model is solved using a heuristic based on natural 

evolution known as a genetic algorithm. The strategic assignment submodel presented in Sections 3.1 and 

3.2 is solved using a straightforward approach based on the well-known Frank Wolfe method. 

Additionally, the strategic assignment approach both with and without capacity uncertainty require a 

number of assumptions in order to provide a tractable form of the model to solve analytically. All solution 

methods and assumptions are detailed Sections 4.1 – 4.3. 

 

4.1 Strategic assignment model 

In order to solve the strategic assignment model, this approach assumes a lognormal distribution for the 

total travel demand     (          ), where      is the total expected demand, the      is the 

coefficient of variation of total trips, and that the OD demand follows fixed, specified proportions. 

Travelers make their route choices based on knowledge of the distribution and the resulting expected 

travel costs.  In order to solve the StrUE and StrUEC models that are the subproblem of this work, we 

assume that travel cost varies with flow according to a variation of the BPR function, where flow is a 

function of link proportion    and the random variable for total demand  : 

  (   )    
 
(   (

   

     
   
)
 

) (14)  

Where   
 

 is the free flow travel time on link  ,    is the capacity,   and   are BPR shaping parameters 

that are commonly assumed to be 0.15 and 4, respectively. For simplicity, this work assumes that the   

and   parameters in the BPR function are the same on every link. The flow proportion on each link   is 

an output from solving the StrUE model.  

The expected total system travel time is an important metric for planners, especially for the 

ranking of design projects. For simplicity, unless stated otherwise, we assume the link capacity    

includes the additional projects and exclude   
    from the travel cost function. Using Equations 10 and 

14, the   can be calculated as: 

   ∫∑    (   ) ( )  

   

 

 

 ∑(  
 
     (

   
 

  
 
)  

   
    )

   

 (15)  
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Where   is the analytical moment of the lognormal demand distribution that is found as: 

    
   

 
 
    

 (16)  

In order to aid with the presentation of system performance metrics, consider the two parts of total system 

travel time as that resulting from sum of the free flow travel time on each link   and that resulting from 

the sum of the delays on each link,    

  ∑  
 
  

   

 (17)  

  ∑(
   
 

  
 
)

   

  
   

 (18)  

Using this notation, the expected total system travel time can then be written as:  

                 (19)  

The standard deviation is more complex because we need to find the expected value with respect to the 

total demand  , of the sum of link travel times squared. However, assuming that   is not link dependent 

(implying   is the same on all links), then the total trips   can be factored out and the standard deviation 

calculated by summing each different quantity on each link, and then computing the         √  . 

         
               (         )

 
 (20)  

While         is somewhat nonstandard, it can still be calculated relatively easily using a single pass 

through the array of links. Next we consider the differences in calculating strategic model performance 

metrics when including link capacity as random variables. 

 

4.2 StrUEC model assumptions 

Additionally, this work considers the model in which capacity is also a random variable that users 

consider for when making a route choice decision and that may have a corresponding impact on network 

design projects. In order to capture the variation in day-to-day capacity, we assume that capacity follows a 

gamma distribution. The inverse of capacity therefore follows an inverse gamma distribution 

       (  
 

 
), where   and   are the distribution shaping and scaling parameters respectively and 

specific to link  . Assume that the expected capacity on a link is   , and the standard deviation is   
   . 

Furthermore, we assume that capacity distributions of each link are independent from one another and 

independent from the demand.  

As input to the StrUEC model let the coefficient of variation on link   be      (
  
   

  
). We calculate the 

link distribution parameters as: 

    
  
  
   

 

    
   

 (21)  

   
  
  
        

  (22)  

Again, the system performance metrics of interest are the analytical total system travel time     and 

analytical standard deviation of total system travel time    , where the subnote   indicates metrics from 

the StrUEC model. The    can be found by combining Equations 11 and 14. 
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    ∫ ∫ ∑    (          
 )  (    ) ( )  

   

 

 

 

 

 ∑(  
 
            

 
  
   

        )

   

 

(23)  

Where      is the     moment of the inverse gamma link capacity distribution that is computed as: 

     
    

∏ (   )
 

   

 (24)  

Note that this definition does place constraints on the feasible values of     . 

 

In order to aid with the presentation of metrics, consider the two parts of the travel cost function, where 

    . To calculate   , the link capacity distribution stays inside the summation because it is link 

specific. However, it remains independent from the capacity distribution on any other link and therefore 

the expectation becomes the moment to the power of  . 

   ∑   
 

   

  
   

     (25)  

Using notation meant to aid in computation, the analytical total system travel time for the StrUEC model 

may be calculated as: 

               (26)  

The derivation of standard deviation from Equation 13 is more algebraically demanding. We need to 

square    before deriving the expectation, so the link specific capacity random variables will be 

multiplied. For clarity, we factor out the “constant” segment of each link quantity attributed to the delay 

as   : 

     
 
   

   
 (27)  

Finding the expectation of the square of a summation of each link is less straightforward. In the demand 

case, we assumed the value of   is not link specific. Therefore   factored out. However in the case of 

Equation 13, when the summation of the travel time on each link is squared, the capacity random variable 

on each link must be multiplied by the capacity random variable on every other link, after which the 

expected value is calculated, shown in Equation 28. 

     ∫ ∫ (∑   
   

 

   

)

 
 

 

 

 

 ( )  (    )      (28)  

Using the property that for independent, real value variables,  (  )   ( ) ( ) and ordering the links 

in a “list”, it is still relatively simple to calculate     . Using manipulation to arrange the equation in a 

form that is computable, the squared part of the system “delay” can be found as: 

           ∑(         ∑             

   

   

)

   

  (29)  
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Therefore the       is calculated as √   , with the variance     shown in Equation 30. 

     
                       (          )

 
 (30)  

 

4.2 Solving the design problem 

The network design problem as formulated in Section 3.3 cannot be solved to a guaranteed global optimal 

value using standard optimization techniques because of the non-convex cost function (Equation 14). 

Therefore heuristic solution methods are necessary. This work applied a genetic algorithm, an 

optimization technique inspired by principles of natural evolution. GAs provide a flexible, rigorous 

framework to solve challenging optimization problems, and are a relatively common research method to 

solve the bi-level traffic network design problem. Karoonsoontawong and Waller (17) showed that in 

terms of heuristic approaches to solve the continuous NDP, GAs perform better than simulated annealing 

or random search algorithms. A GA will correctly identify local extrema, but as is the case with all 

heuristics, the solution is not guaranteed to be the globally optimal value. In this approach, steps were 

taken to ensure that the GA had converged on the best solution. 

A GA locates an optimal solution by searching for promising regions in which there are a high 

proportion of “good” solutions. It begins with a randomly generated initial population of individuals that 

represent potential solutions (called chromosomes). Over “time”, the population evolves according to a 

natural selection process, in which the best individuals are selected and combined using a crossover 

technique to form new populations of individuals.  

This work utilized a single-objective binary-coded variation of the nondominant sorting genetic 

algorithm II (NSGA-II) by Deb (18). NSGA-II is a well-known algorithm that has proven to be the best 

GA tool for solving multi-objective optimization problems, and utilizes several techniques that provide 

superior performance. See (19), (10), (11) for other examples that utilize NSGA II for various 

applications of the traffic network design problem. 

An important aspect of using a GA to solve any optimization problem is how the problem 

variables are represented. As in previous applications, this work uses a “binary” approach in order to limit 

the feasible solution space. Each “chromosome” is specified to have as many bits as there links in the 

network. Then a “0” represents the decision not to add capacity to a link and a “1” means to add capacity 

(where the amount of capacity to add is a model input). In general, GAs perform better without 

constraints. However, a constraint was unavoidable in this application due to the fact that we consider the 

cost of adding capacity to a link to be related to the length of the link. We avoided the use of a penalty 

function by initializing each population (set of GA chromosomes) to be feasible. A GA relies on 

crossover and selection procedures to explore the solution space. However, for binary approaches where 

the solution contains many more “0”s than “1”s, there is a much higher probability that crossover or 

selection will result in infeasible solutions. This issue was addressed by running the GA for more 

generations to give it more time to explore the solution space. A crossover probability of 0.9 and a 

mutation probability of 0.001 were used in this work. 

In order to evaluate a design scenario, this work employs two performance metrics to measure the 

relative impact of each design scenario. For the performance metrics,  (   ) is used to indicate the 

percentage difference between two quantities. The decrease in expected total system travel time is the 

percentage difference between the   , the system travel time in the base case with no design changes, and 

  , the expected system travel time that results from design scenario    with the same principle applying 

to the case of     . 
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      (       )    
   
   

 (31)  

       (           )    
     
     

 (32)  

 

5. RESULTS AND DISCUSSION 

This section demonstrates the NDP model accounting for strategic user behavior and discusses the 

implications for planning for uncertainty in transport networks. The GA is used to solve a variety of 

design scenarios. Results are presented for a small network in order to demonstrate the model and then on 

a slightly larger network where more rerouting effects can be captured. Three modelling approaches are 

compared: StrUE, StrUEC, and a deterministic UE approach. 

 In the design scenarios, there are three sets of input parameters that can be changed: the total 

budget, the cost of building on a link, the amount to be added to the link (in the binary relaxation). The 

user inputs regarding the demand are: the expected value of total trips, and the coefficient of variation of 

the demand distribution. Networks with a higher degree of fluctuation in the realized demand will have a 

higher      . The link capacity follows an inverse gamma distribution, where for each link, the primary 

input is the expected value of the capacity for each link and the coefficient of variation for each link. 

 In the strategic assignment network design application, the planner seeks to rank and compare 

different design scenarios, indexed by     
   . In this experiment, the objective is     , and we focus 

on the case where            . Lacking the appropriate data, we assume that the cost to add capacity 

to each link is equivalent to the length of that link. Essentially, this captures the fact that the cost to add 

capacity to all links is not equivalent, but links that are longer will cost more to enhance their vehicle 

capacity. If the cost is $100K/km, then a budget of 10 is a proxy for $1M budget. 

 

5.1 Small network demonstration 

The first demonstration utilizes a test case based on the Nguyen-Dupuis network that is popular for small 

transport demonstrations. The network data can be found in Appendix I. There are two origins (1 and 4) 

and two destinations (2 and 3) with a strategic demand parameter  (             ). Note that the 

original demand resulted in a highly congested network and therefore a deflated demand was utilized in 

this work. 

Figure 1 presents results for the StrUE network (where          ) for a specific design 

scenario         
 , meaning that a total of 25 “length units” of 1,500 vph capacity were added to the 

network. The horizontal axis shows the value of       as it varies between 0 and 0.6. Figure 1(a) shows 

the value (absolute not relative) of     and       (in minutes). Figure 1(b) shows the performance 

metrics     and       for the same cases of      .  
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FIGURE 1 Results for Nguyen Dupuis network and StrUE subproblem 

 

Figure 1 suggests that for a small network and low levels of volatility, a design scenario will receive 

similar evaluations of performance. However, once the       reaches a certain point, the      becomes 

much larger and the reduction in      is less. It is also empirically observed that in most cases, but not 

all, the GA identifies the same optimal set of projects. 

Figure 2 presents the same demonstration where the demand is treated as a deterministic quantity. 

It is assumed that all links in the network have the same level of volatility. The horizontal axis of Figure 2 

shows the values of      as it varies between 0 – 0.4 in increments of 0.05.  

 
FIGURE 2 Results for Nguyen Dupuis network and StrUEC subproblem 

 

Increasing levels of link volatility did not have an immense impact on project evaluation. This is likely 

due to the fact that the links were all treated as uniform, i.e., identical    and     . Therefore the design 

projects affect      more than   . In networks where certain links have higher levels of volatility, this 

might not be the case.  

Next we examine the case where there is volatility in both the demand and the capacity. For the 

results in Figure 3,           and            . In this experiment, we examine the impact of 

different budgets, which are shown on the horizontal axis. The vertical axis shows the system 

performance metric, where the blue columns represent    and the grey columns represent the results for 

    . The red crosses in Figure 3 represent the predicted performance of the design scenario in the 

deterministic case (where         and          ).  
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FIGURE 3 Results for Nguyen Dupuis where           and            

 

In many cases, the project selection is different when network uncertainty is accounted for. Of course, 

project evaluation is also different. Network design projects can impact the network by either lowering 

the travel time on routes and thereby lowering the total system travel time, according to the travel cost 

function, or by causing people to change routes, which will have unintuitive and unpredictable impacts on 

system performance metrics. For the simple case of the Nguyen Dupuis network, a deterministic approach 

appears to overestimate the impact of design projects.  

 

5.2 Medium network demonstration 

While the network used in Section 5.1 is useful to isolate individual behaviors, it is too small to capture 

any significant effects of route choice. Therefore, this work presents results from a second experiment on 

the well-known Sioux Falls network, the data for which was obtained from Bar-Gera (20). Sioux Falls 

consists of 24 nodes, 76 links and 24 zones. The strategic demand parameter is  (               ).  

 Figure 4 presents the results for a design scenario        
  for the when the budget varies from 20, 

40, 60, or 80. The horizontal axis indicates the total budget, while the vertical axis indicates the 

performance metric, which is the reduction in travel time or standard deviation due to the design scenario. 

Figure 4(a) presents the result for the StrUE model where        (and          ) and Figure 4(b) 

presents the results for StrUEC, where      is based on  normalizing the capacity to a range of 0.0-0.2. 

 

  
FIGURE 4 Results for the Sioux Falls network with (a) StrUE subproblem and (b) StrUEC 

subproblem 

The GA found similar solutions, although the reduction in    and      was greater for the 

results of the StrUEC model where there was also more volatility. In nearly all cases, the GA identifies a 
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different set of links for capacity addition for the deterministic versus the stochastic models. Additionally, 

the level of volatility (as captured by increasing the coefficient of variation of the probability 

distributions) affects the selection of optimal links. In most cases, increasing the budget resulted in links 

being added to the optimal set for capacity addition. More research is needed to determine the relationship 

between the volatility on individual links and network performance metrics. 

 

6. Conclusion and future directions 

The network design problem has a solid foundation in the literature, but remains a challenging topic 

among researchers. The problem becomes more complex when uncertainty in real-world parameters is 

included in the modelling procedure. However, model predictions may be impacted by the extreme 

behaviors caused by driver reaction to uncertainty, which could change project ranking and evaluation. 

Additionally, the performance of infrastructure design scenarios will almost certainly be forecasted 

incorrectly and it is not intuitive whether they will overestimate or underestimate project performance. 

 This work proposed a network design model that uses the strategic assignment approach to 

capture the reaction of vehicle travelers to day-to-day demand uncertainty. Additionally, an extension of 

the strategic approach where day-to-day link capacity is also a random variable is compared. The model is 

solved using a tailored genetic algorithm. Results show that at low levels of volatility, project rankings 

may not be as significantly impacted; however, project evaluations will change. As the volatility in the 

network increases, not accounting for uncertainties in modelling parameters means that suboptimal 

projects could be selected. Future work will explore more in-depth implications of link capacity 

uncertainty on the network design problem and incorporating reliability into the strategic route choice 

decisions of users. 

 

APPENDIX 

 

Nguyen Dupius network data: 

From 

Node 

To 

Node 
Length 

FF 

Speed 

(mph) 

1 5 6 50 

1 12 8 50 

4 5 3 50 

4 9 6 50 

5 6 2 50 

5 9 4 50 

6 7 3 50 

6 10 10 50 

7 8 4 50 

7 11 12 50 

8 2 4 50 

9 10 3 50 

9 13 12 50 

10 11 4 50 

11 2 3 50 

11 3 3 50 
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12 6 4 50 

12 8 12 50 

13 3 7 50 
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