Akcelik & Associates Pty Ltd
r PO Box 1075G, Greythorn, Vic 3104 AUSTRALIA

info@sidrasolutions.com

SIDRA SOLUTIONS® Management Systems Registered to 1ISO 9001

ABN 79 088 889 687

REPRINT

Stops at traffic signals

R. AKCELIK

REFERENCE:

AKCELIK, R. (1980). Stops at traffic signals. Proc. 10th ARRB Conf. 10(4), pp 182-
192.

NOTE:

This paper is related to the intersection analysis methodology used in the SIDRA
INTERSECTION software. Since the publication of this paper, many related aspects of the
traffic model have been further developed in later versions of SIDRA INTERSECTION.
Though some aspects of this paper may be outdated, this reprint is provided as a record of
important aspects of the SIDRA INTERSECTION software, and in order to promote software
assessment and further research.

© Akcelik and Associates Pty Ltd / www.sidrasolutions.com
PO Box 1075G, Greythorn Victoria 3104, Australia
Email: info@sidrasolutions.com



STOPS AT TRAFFIC SIGNALS

R. AKCELIK, Civ. Eng., M.Sc. (ITU), Ph.D. (Leeds), M.I.E.Aust., M.I.T.E.
Senior Research Scientist, Australian Road Research Board

ABSTRACT

The queue length, delay and stop rate at isclated undersaturated traffic signals are discussed.
Each of these three performance measures ig considered to consist of a wniform and a random
component., The component which allows for randommess is related to the average overflow gueue
which is calculated explicitly by the Miller method. An equivalent cverflow queue formula is
given based on Webster's method for caleulating the average queue length at the start of the
green period. A formula is given for predicting stop rates at isclated undersaturated signals,
which is considered to be satisfactory for most practical purposes. The formula may predict
stop rates higher than one for flows approaching capacity because of multiple stops in
oversaturated cycles. The formula also allows for a reduction due to partial stops, f.e.
vehicles which slow down without coming to a complete stop. Formulae for pedestrian stops,
delays and queues are given. The discussions include the congsideration of fuel consumption
caleulations and eoordinated signal cases. It is suggested that simulation and other methods,
and existing control practices, which ignore multiple stops are severely rvestricted in their
prediction of, or effectivenaess in reduacing, vehicle fuel consumption and pollutant emissions
at traffic signals. A numerical example and a method for the caleulation of a stop reduction
factor to allow for partial stops are given in the dppendices.

NOTATIONS AND DEFINITICNS N = Average queue length at the beginning
of the green period, i.e. the
maximum queue length during ar

¢ = C(ycle time in seconds. average cycle.

d = Average delay per vehicle in g = Flow - average number of arrivals
secends ., per unit time.

D = Total delay per unit time in roo= Effective red time in seconds
vehicle-hours per hour or vehicle- (= c-g).
seconds per second (= gd). s = Saturation flow - maximum steady rate

g = Effective green time in seconds. of departure from the gueue

h = Stop rate - average humber of during the green period (vehicles
stops per vehicle. per unit time).

H = Total number of stops per unit time u = Green time ratio - the proportion
(= gh, in vehicles per hour if g of the cycle which is effectively
is in vehicles per hour}, green, i.e. the ratio of effective

No = Average overflow queue - average green to cycle time (=g/c}.
number of vehicles left in the Xx = Degree of saturation - the ratio
queue at the end of the green period. of flow to capacity {(=q¢/sg).

ACKNOWLEDGEMENTS: The author wishes to thank the Executive Director of ARRB, Dr. M.G. Lay,

for permission to present this paper. The views expressed in this paper are those of the author
and not necessarily those of ARRB. The author is indebted to Dr. A,J. Miller of CSIRO, Division
of Mathematics and Statistics, for a suggestion regarding the use of the overflow queue

concept in the derivation of the stop rate formula.
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Y = Flow ratio - the ratio of flow
to saturation flow {q/s).

INTRODUCTION

1. The traditional method of calculating
optimum signal timings for an jsclated
intersection is based on the use of delay as
a measure of performance {Webster 1958;
Webster and Cobbe 1966; Miller 1963, 1964,
1968; Allsop 1971; Sims 1979). A
performance index which combines delays and
stops is used in the TRANSYT computer

program for finding optimum settings for

co-ordinated traffic signals (Robertson 1969).

It would be desirahle to use the same
approach for isolated traffic signals because
vehicle stops are important when factors
such as vehicle operating costs (fuel
consumption, wear and tear), air poliution,
annoyance to drivers and safety are
considered. In particular, the contribution
of vehicles stops to total fuel consumption
and pollutant emission is significant
{Baugr 1975; Courage and Parapar 1975;

Dart and Mann 1978; OECD Road Research
Group 1977; Patterson 1975, 1976}.
Similarly, a large proportion of accidents
at traffic signals could be attributable

to the need to stop vehicles, as suggested
by Huddart (1969). These factors make it
important to find signal settings which
reduce vehicle stops as well as delays.

2. A satisfactory method for the
prediction of vehicle stops is therefore a
necessary prerequisite. Several formulae
for the calculation of stops were given by
Webster (1958). In this paper, an attempt
is made to clarify the conceptual basis of
these formulae. The term stop rate is
introduced, which is the average number of
stops per vehicle. It is shown that it
consists of a uniform stop rate component
and a random stop rate component. The
uniform stop rate component is equivalent to
what was called ‘the proportion of vehicles
which stop at least once' by Webster {(1953),.
The random component of the stop rate
becomes significant for high degrees of
saturation (i.e. as flows approach capacity),
much the same as delay.

3. It is shown by considering the
Webster (1958) and Miller (1963, 1964, 1968)
formulae that delay, queue length and stop
rate are interrelated, and that each can be
considered as having a uniform and a

random component. The uniform component is
related to the red time and the random
component is related to the overflow queue.
The Miller method calculates the average
overflow queue in an explicit manner. It is
shown that the Webster method for the
calculation of the maximum queue length in
an average signal cycle can be extended to
calculate an equivalent overflow queue.
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4, By comparing the average overflow
queues alone, it can be shown that the
predicted values of delays, queue lengths
and stop rates from the Miller and Webster
methods are very close. Discussions of the
relationship between the delay and the
overflow queue are given by Miller {1964) and
Allsop {1972)}. A method of measuring delay
in the field based on the measurement of
overfiow queues is described by Sagi and
Campbell (1969).

5. Random variations in arrival flow
rates result in some signal cycles being
oversaturated. In such cycles, some vehicles
will be stopped more than once, and this may
lead to an average stop rate greater than one.
This effect becomes significant for degrees
of saturation greater than 0.8, i.e. as

flows approach capacity. Since most signals
operate near (or at) capacity conditions
during peak periods, it is highly desirable
that the analytical or simulation models

and the field survey methods allow for this
effect. Otherwise, the number of stops may
be severely underestimated, in which case

the relevant fuel consumption, pollutant
emission and similar calculation results
will reflect these errors.

6. The effect of randomness on the number
of stops has usually been neglected in
practice, It appears that most simulation
models reported in the literature (even

those which model individual vehicle
acceleration-deceleration manceuvres) measure
the proportion of stopped vehicles, or an
equivalent statistic. In other words, they

do not measure multiple stops, hence the
maximum stop rate which can be measured is one.
For example, the macroscopic simylation model
of the widely used TRANSYT program

{Robertson 1969) measures delays, gueue
lengths and stops based on uniform arrivals.
It makes a correction to delays to allew for
randomness, but uses uniform stops in the
calculation of a performance index.

7. The field survey method described
by Reilly, Gardner and Keil (1976) also
ignores multiple stops ('each vehicle is
counted only once regardiess of the number
of stops it may have made'). On the other
hand, a recent survey method described by
Richardson (1979) allows for extra stops.

8. In this paper, a formula is given
for the calculation of stop rates at
undersaturated isolated signals. The
formula allows for randomness in arrival
rates through the use of an average overflow
queue. It also allows for partial stons,
i.e. vehicles which slow down without coming
to a complete stop. The stop rates and the
total number of vehicle stops calculated
from this formula are expected to be
sufficiently accurate for most practical
purposes. Its main use would be in the
comparison of relative effectiveness of
alternative signal designs. A formula for the
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number of pedestrians stopped at traffic
signals is also given.

9. A numerical example is given in
Appendix A to illustrate the use of the
formulae presented in this paper and to
indicate the closeness of results from
the Webster and Miller formulae.

10. As tha farmulae for the prediction
of stop rates make direct use of the average
queue length at the start of green as a
parameter, this is discussed first,

1. Following Miller (1964), the
exnression to give the average number of
vehicles in the queue at the beginning of
tha green period (i.e. the maximum queus
during an average signal cycle) can be
written as:

N o= N, b Mg (1)
vhere Ny = uniform queue, and
Ny = average averflow queue,

The upiform queue based on the assumption of
reaular arrivals {copstant headways) is
given by Ny = or, where q = arvival flow
ratn (veh/s) and r = effective red time (s).
Tharefore,

M = gr + Np (2)

The averflow queue, Mo, i.e. the average
numher of vehicles left in the queue at the
erd of the green period is due to the

random fluctuations in vehicle arrival rates
causing some cycles to be oversaturated.

Thus, Ny is the random queue term in egn (2).

12. Webster (1958) gave the following
formula for the average gueue at the
beginning of green:

N = {%; + qd) or gr,

whichever is the larger

(3)

where d = average delay per vehicle (s).
From eqns (2) and (3), the overflow queue
is:

No = (-0 oro,

whichever is the larger (4)
where I = qd is total delay.
13, The total delay based on Webster's
formula is:
-u)? 2 1/3 _ {(2+5u)
N = qe(l-u}?, % .
where c = cycle time (s),

qc = averags number of arrival per
cycle {veh),
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v = green time ratio {a/c),

v = flow ratio (flow/saturation,
flow. g/s). and

x = degree of saturaticn

(finw/capacity, gr/sa).

14, The first term of ean (5} is the
uniform delay term which is the expression
for delay when arrival headways are constant.
Webster (1958} refers to the second and
third terms of his fnrmula as the random
delay and the empirical correction terms,
respectively. However, as suggested by
Allsop (1972), these two terms togethar

can be reoarded as the random delzy term which
estimates the extra delay resulting from
overflow queues. Therefore the total delay
can be expressed as:

3 = Dy + Dy {r)

15. The Miller (19f8)} expraossion for
delay is based on an exnlicit formulation of
the overflow queue, In its eriginal form,
Miller's formula for averace deley per
vehicle is:

7

= £-9_ (2 (c - g
47 g gt e o)
where Ng is the average overflow gueus,

The total delay hased on egn {7} and in the
form of con (6) is:

Loqe {1-u)? 1-u ;
It is seer that the uniform deiay terrm in
ean (8) is the same as Webster's formula
(eqn (5)) and the difference between the
Miller and Wehster formulae is due to tke
random delay term only. From eqn {8}, th=
random delay term of the Miller formula is:

1-u \
Dr = T_"—? NO ’9)
16. Miller's formula for the average
overflow queue is:
- exp(- 1.330) -
I i 6 557 (10)
- i/z
where p = l,;“i (sg)1 or
- 1/2
L= X (ge)
x 32

The values of the average overflow gueue
calculated from egn (10} are given in

Table I for various degrees of saturation,
x, and maximum number of departures per
cvele, sg. It is seen that, for low degrees
of seturation (about x < 0.6}. the overflow
gucue, Ny, is zero, and hence the random
dalay term Dy, is zero (ean {(9)).

17. Because the Miller formula (eqn {10))
oresents an explicit and direct method for
the calculation of the average overflow aueuz,
it is conceptually more appealing than the
conditional and indirect formulation bhased

on Webster's method {eans {3) and {41).

ARRB PROCEEDINGS
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TABLE I

STOPS AT TRAFFIC SIGNALS

AVERAGE OVERFLOW QUEUE, N FOR ISOLATED SIGNALS
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18. The explicit formulation of the
average queue length at start green {egn {2)}
is used below for the derivation of a general
formula for stop rates at undersaturated
isolated traffic signals.

STOP RATE

DERIVATION OF A GENERAL FORMULA

19, The average number of stops per
vehicTe will be called the stop rate and will
be denoted by h. The total number of stops
per unit time experienced by a movement with
an arrival flow rate of q (vehicles per unit
time) is given by:

H = qgh (11)
20. Webster (1958) derived a formula
for 'the proportion of vehicles which stop
at least once' (i.e. the proportion of
stopped vehicles irrespective of how many
times they are stopped)}. It is shown below
that this formula corresponds to the
‘uniform stop rate' term given by:

l1-u

e (12)

hu =

g/c {the green time ratio) and

where o =
= gfs (the flow ratio}.
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21. Webster (1958) also gave formulae for
the 'average number of starts and stops

per vehicle' and a diagram which compares
this with the proportion of stopped vehicles
for a particular case. Webster's formulae
were given separately for two cases depending
on whether the average queue at the beginning
of the green period can be cleared during one
green time, or not. However, a general
method which unifies the two cases was not
described. It is also not clear how the
curve representing the average number of stops
per vehicle relates to the two formulae given
by Webster (1958, Fig 9}. These formulae

and the diagram are not included in the
subsequent publication by Webster and

Cobbe {1966). Only the formula corresponding
to egn (12} is included.

22. A general formula for stop rates at
undersaturated signals is derived below
based on Webster's {1958) statement that
the total number of stops during a signal
cycle is equal to the number of vehicles in
the queue at the beginning of the green
period plus those vehicles which arrive
while the queue is clearing during the green
period. Let n be the gqueue Tength at the
start of green. The queue discharge rate
is {s-q), where s is the saturation flow
rate and q is the arrival flow rate. The
discharge time for n vehicles is n/(s-q),
and the number of vehicles which arrive
{hence stop) during this time is gn/(s-q).
Therefore the total number of stops during
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A signal cycle is:

nov I o (13)

This corresponds to the formula given by
Webster (1958) for the case where n/{s-q) < g,
i.e. the queue at the start of green can be
cleared during the agreen period. A
generalised formula is derived below using a
method similar to that emnloyed by Miller
{1963) to derive his delay formula (first

put forward by Winsten 1956).

23, Let us first assume that the green
period is of unlimited length. The number
of stopped vehicles up to the time at which
the queue is cleared is given by eqn (13).
et n; be tha number of vehicles left in the
gqueue at the end of the previcus green time,
The queue at the start nf green is n = nitqr,
and hepce, the number of stopped vehicles is
{nyrar)s/{s-9}. Tho number of vehicles
stooped during the actual (limited) green
reriod is found by subtracting the number of
vebicles which would have arrived after the
end of the actual green period (i.e. the
following cycla). et n, be the number of
vehiclgs 1eft 2t the end of the Timited
green period. The time between the and nf
the Jimited (actual} green period and the
‘unlimited' green period is n./{s-q). The
rumher of vehicles which arrive during this
tira i5 n,qf(s-q). Hence, the numher of
stonped vehicles in a cyrle is:

{mitar)s  n:q _ nytar-nyy (1)
s-0 5-q i~y '

The average of this over n, and n, is the
number of stopped vehicles in an average
cycle., Under steady-state (undersaturated)
conditions, the averages of n; and n, are
both Ng. Therefore, the average numbher of
<tons per cycle is:

r
S (15)
Dividing this by the average number of

vehicle arrivals per cycle, gc, the number

of stops per vehicle, i.e. the stop rate,
is obtained as:

- l-u No
h 1-y + 5 {16)
24, Eqn (18) can be expressed as:
h = hu + hr (17)

where hy and hy are the uniform and vrandom
stop rate terms, respectively. The uniform
stop term. hy, is the nurbher of stops per
vehicle assuming regular arrivals. It also
corresponds to Webster's (1958) formula for
the proportion of stopped vehicles, The
second term, hy, estimates extra stops due
to random variations in arrival rates from
cycle to cycle. Its effect is negligible
for low degrees of saturation (zero for the
degrees of saturation, x. less than 0.6

186

because Np = 0 as seen in Table 1}. However,
as the value of x increases., the effect of
the random stop term becomes increasingly
significant.

25, This can be observed from Fig 1,
which shows the stop rate (curva A) as a
function of the degree of saturation frr the
data used by Webster (1958, Fig 9). Curve B
in Fig 1 represents the uniform stop rate
term, hy. The difference between curves A
and B is the random stop rate term, h-,
calculated using No values from Miller's
formula (eqn {12}}. Thke stop rate curve
given in Fig 1 was found to be clnsz to the
correspending curve in Fig 2 of Webster (1958},

25 "}
u=04 ] H

qc =10 l
20 L. 1 P E—— e
[
|
woo1s +w_-_ 4
é_\ i
a = | A/lh |
2 1.0 | !
e Kk — SR ._“%,ﬁ
e !
—’J",‘J/ ro i
h, !

oo " l l (
ps | — e L
H i

! I l

0 l |

n 0.2 04 0.6 0% na 1n

PEGRFE OF SATHRATION
{x}

Fig 1 - Stop rate as a function of the
degree of saturation

26. The two formulae given by Webster

for stops in undersaturated and oversaturated
cycles were combined for the purpose of
comparing the resuits with those obtained
from eqn {16). A complicated formula was
cbtained which expressed the randcm stop

rate Lerm as & function of the propcortion of
oversaturated cycles as well as the average
overfiow queue. The values nf these
parameters were calculated from Miller's
formulae {1968), and the stop rates were
calculated from the complicated formula

for the data in Fig 1. It was found that, for
large degrees of saturation, the stop rates
from the complicated formula were scmewhat
larger than, but for most practical purposes
sufficiently close to, those given oy

eqn (16). However, the comparison is not
considered to be very useful, as there are
doubts concerning the basis of the comnlicated
formula.

7. It is thought that a comparison of
small differences in stop rates from various
formulae may not be very meaningful for

the sensitive region of near-capacity
conditions (the same applies to delays and
queue lengths). Firstly, the analytical
formulae are only approximate expressions,
Secondly, the accuracy of field measurements
under heavy traffic conditions will probably

ARRB PROCEEDINGS
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b= limited. Even when microscopic
techniques are utilised in which individual
vehicles are traced in the traflic stream,
it is likely that an errar level up tn 10
per cent will remain in measured valuas
{Sagi and Campball 1962). The method
described by Richardson (1979) requires a
Judgement ahouyt the definition of a stopped
vehicle brcause 'it was found that many
vahicles were effectivaly stonped although
2ti11 creeping'. The drivers usually adjust
thair pnsitions in 2 long queue, and this
veuld cause similar measurement difficulties,

", For these reasons, egn {16} is
considered to be a satisfactory expression
for stop rates at undersaturated signals
{degrees nf saturation up to 0.96). It has
the advantages of simplicity and
consistency with the queuz length and delay
formulations. However, thore is a need to
cerrect for partial stops (vehicles which
are drlayed without coming to a fuil stap).
This is discussed below,

CORRECTION FOR PARTIAL STOPS

29. The analytical expressinns of delay
at traffic signals (egns (5) and {8))

mreasure the delay at the stop 1ine by assuming
infinite deceleration and acceleration rates.
Discussions of this subject are given by
Webster {1958), Allsop (1972) and

Richardson {1979}, The time-distance
trajectory of vehicle 2 in Fig 2 shows

that the stop line delay (BB') differs from
the actual stopped delay {ts) by an amount
equal to half the sum of deceleration and
acceleration times, {tq + ta)/2.

W
g
:(... stop line
“y
o
1 2 a
TIME
Fig 2 - Time-distance diagram to
illustrate the relationship
hetween delays and stops
3n, As a result of this method of

measurement, & vehicle which is delayad only
for a short time without coming to 2 full
ston j§ counted as a stopped vehicle. The
term partial stop may bhe used to describe
sich a case (e.qg. vehicle 3 in Fig 2). A
vehizle whose stop-line delay is Tess than
the time t is subjoct to a partial stop.

VolLume 10, PArRT 4, 1980

31. A correction is necessary for
partial stops because the rates of fuel
consunption, poltutant emission, =tc, are
different for a complete step and a partial
stop. A simpble reduction factor can be
applied to the ston rate given by egn (16},

i.e,

- 1-u No 1a
h f(1 y GC) 18}
32, 4 method for calculating the value

of the reduction factor, f, is given in
Appendix G. The method is somewhat tedinus.
and th2 use of a constant value of f = (.9

is corsidered to b2 satisfactory for mast
practical purposes. The resulting formnla
which is given below may slightly overestimate
stop rates under light traffic conditions

and may underestimate stop rates under heavy
traffic conditions (sce Table II ir

Appendix B}.

THE RECOMMENDED FGRMULA

33. In summary, the recommended formula
for estimating the stop rates, i.e. the
average number of complete stops per vehicie
is:

ho= og(lj gg) (19)

where q = arrival flow rate (veh/s),
c = cycle time (s),

u = effective green time/cycle time
ratio (g9/¢c},
y = flow/saturation flow ratio (q/s),

and
No= the average overflow queue
{eqn (4}, or eqn (10)).

The total number of {complete} stops per hour
is calculated from H = gh. A convenient
formula for calculating the number of stopred
vehiclas directly is:

320 qar

c 17y t Nn) (2G)

H =

A numerical example is aiven in Appendix A,

34, Fig 3 illustrates stop rates as &
function of the degree of saturation for
various values of the green time ratio, u,
and the maximum number of departures per
cycle, sg, in order to indicate the differences
betwean the stop rates experienced by

minor road traffic (u = 0.1, sg = 10} and
major road traffic (u = 0.5, sg = 60}.

Fig 4 is given to illustrate the differences
between random effects in minor and majer
road traffic cases. The difference between
curve C (uniform stop rate) and curve A

for sg = 10 {or curve B for sg = 60) is

the random stop rate. It is seen thal random
effacts in stop rates are higher fop minar
movements, It is alsc seen from Figs I and

4 that random effects are negiligibla for
degrees of saturation less than 0.5 (because
tkz overflow quaur, Nn, is zero as seen

in Table I). Graphs in Figs 3 and £ are based
on the use of egn {19) with the averaga
averflow gueue, Mo calculated from the

Miller formula (egn (10)).
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Fig 3 - Stop rate as a function

of the degree of saturation
for various {u, sg)} values

PEDESTRIAN STOPS

35, The number of pedestrians stopped at
traffic signals can be calculated from:
= 4r
H < (21)
where q = pedestrian arrival flow rate

(ped/h, or ped/s},
r = effective red time to
pedestrian(s), including the
flashing don't walk pericd,
cycle time {s), and
is in the same unit as q.

C
H

This formula has been derived from eqn {16)
by putting ¥y = 0 and No = 0, resulting in a
stop rate of h =1 - u=r/c. This is
justified on the basis of very high
pedestrian saturation flows (hence small
values of y and x). The formula may
underestimate the number of stopped
pedestrians when pedestrian flows are very
high, in which case egn (16) can be used
for better estimates.

36. It should be noted that the number
of pedestrians in gueue at the start of
green is:

N=aqgr (22)
where q 1is in ped/s.
Therefore, eqn (21) assumes that no
pedestrians are stopped during the green
(walk) period, i.e. assumes an instant
discharge of the pedestrian queue. The

corresponding formula for average delay in
seconds per pedestrian is:

d = = {23)
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Fig 4 - Random effects on stop rate for
various {sg) values, u = 0.2

DISCUSSION

37. Equation (19) is recommended for
use as a general-purpose formula for
predicting vehicle stop rates at isolated
traffic signals. It allows for randomness
effects as well as partial stops. The
formula is considered to be satisfactory
for most practical purposes.

23. It should be noted that the proposed
formula is valid for traffic conditions

where demand is less than the capacity, i.e.
the undersaturated case. Miller (1968)
qualified his formula for the average
overflow queue, Nog, that it is a good
approximation for the degree of saturation,

X between 0.4 and 0.96. Because No determines
the queue length and delay as well as the
stop rate, it is considered to be appropriate
to state that the formulae presented in this
paper are valid for x up to 0.96.

39. Strictly speaking, the proposed

stop rate formula is for fixed-time signals.
However, as with the delay and queues length
formutae, it can be used for vehicle-actuated
signals under heavy flow conditions in order
to evaluate relative merits of alternative
signal designs.

40. The proposed stop rate formula is a
general one which can be used with any
queue length prediction method for isolated
traffic signals. The difference between
various methods would be in the calcuiation
of an average overflow queue. The
differences between the overflow queue
values calculated from the Webster and
MilTer formulae (egns (1) and {10)) have
been found to be very small (less than

+ 2 per cent). Because the overflow gueue
determines the random components of delay,
queue length and stop rate, and the uniform
components are the same, predictions of
these statistics using the Webster and
Mitler formuTae would be very close in most
cases. The numerical example given in

ARRB PROCEEDINGS
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Appendix A illustrates this for a particular models are significantly differert. The

case. However, the Miller formula for random delay term used in MITROP is5 equal to

calculating an averace overflow queue is the overflow queue values given by

preferred because it is explicit and direct. Wormleighton (19485}, In his paper,
Wormleighton discusses the problem in the

41. In the case of opposed turners, a context of co-ordinated signals, but his

higher value of the correction factor, f. overflow queue values appear to be for

could be used in the stop rate formula in izolated sigrals (Poisson arrivals and

erder to allow for the extra number of constant service time), rather than closely

'partial stops' made by vehicles in the snaced signals (platoon behaviour}.

queue during the gap acceptance process.

42, Tho total number of stops, H, given

by eqn {19), and the total delay, D. given FURTHER WORK

by eon (5} or eqn (8) can be used for fuel

consumption {similarly, for pollutant

emission} calculations of the type a5, The following work is recommended
{ky D + k, H), where k; and k, are the for future research and development.

fuel consumption rates for jdling and a

complete stop, respectively. However, if {a) Testing of the provosed stop rate

ky is strictly an idling rate, then there formula for undersaturated isclated
is a nead for correction because the model signals by means of field surveys
dalay includes the stopped time (ts) as ard experiments with microscopic

well as the deceleration-acceleration time simulation models.

t = % {tg+ta) as shown in Fig 2. A feasible

methed is to adjust the fuel consumption (b) Foarmulation of relationships between
rate for stops to k: = k& - ky t, i.e. the overflow queue and the random
reduce by kit for each stopped vehicie, delay term and between the overfiow
For example, if k; = 2.4 L/h, ki = 0.05 queue and the random stop rate term
L/ston. and t = 15 s, the adjusted rate per for co-ardinated signals and for

stop is k. = 0.04 L/stop. vehicle-actuated sianals.

43, An interesting extension of the {c) Development of a stop rate formula
methodology proposed in this paper might be for temporarily oversaturated

its application to the co-ordinated signal conditions. Robertson (1979) sudqgests
case, making use of the relationship between that, for delays (d) very much Targer
the overflow queue and the random delay. than a cycle time (¢}, the number of
For example, TRANSYT traffic model stons should be related to the ratic
(Robertson 1969) uses the random delay {d/c) but modified for the tendency for
term x2/4(1-x) which is half the value of vehicles to limit their speed changes
the second term of Webster's formula (ean 5). where it is obvious they will have %o
If this is valid, and the relationship stop again before clearing the
between overflow queue and random delay in stop line {i.e. partial stops rather
the case of linked signals is similar to than complete stons). Multiple

that for isolated signals (i.e. as in ean 9), stops become much more important

then it could be said that the average in oversaturated cases giving rise
overflow queue at linked signals would be to stop rates much higher than 1.0.
hal¥ the value of the average overflow queue Simulation and other methods, and

at isolated sionals with similar signal existing traffic control practices, which
and flow characteristics. Once a relationship ignore myltiple stoos are severely

of this nature is established, then restricted in their predictinn of,
randomness effects could be allowed for in or effectiveness in reducing, vehicle
co-ordinated signal cases as well, Such fuel consumption and pollutant

a model improvement would significantly emissions at traffic signals.

affect the optimisation results if included

in a program like TRANSYT (it should be noted {d) Determination of the value of the
that the TRANSYT performance index combines correction factor, f, for opposed
delays and stops using delays corrected for turners to allow for extra stops
randomness but stops including uniform values (partial) due to the gap acceptance
only). process.

44, It is interesting to see that the

HITROP computer program {Gartner et al. 1976)

for optimising cn-ordinated signal timings REFERENCES
uses a random delay term (saturation
deterence function) which is calculated as

a function ¢f the overflow gueue. However, ALLSOP, R.E. (1971}, SIGSET: a computer
the overflow queue values given by Gartner, program for calculating traffic signal

ot al. as the basis of MITROP are practically settings. Traff. Eng. Control 13{(2},

the same as the nverflow queues given by pp. 58-€0,

the Miller formiia (eqn (10)) for isolated
irntersections. This indicates that ths
random delay term of TRANSYT and MITROP
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APPENDIX A
NUMERICAL EXAMPLE

46. Let us consider a movement with the
following flow and signal timing
characteristics:

flow, q = 1310 veh/h,

saturation flow, s = 4800 veh/h,
green time, g = 30 s, and

cycle time, ¢ = 100 s,

The following parameters are calculated
from the above data:

flow,q = 1310/3600 = 0.364 veh/s,

red time, r = c-g = 70 s,

average number of arrivals per cycle,
qc = 0.364 x 100 = 36.4 veh,

maximum number of departures per cycle,
sg = (4800/3600) x 30 = 40 veh

degree of saturation, x = qc/sg = 0.91,
green time ratio, u g/c = 0.30, and
flow ratio, y = q/s = 1310/4800 = 0,27,

e

The delays, queue Tengths and stops are
calculated below allowing for random

effects using the method described in the
paper., Both Miller and the Webster formulae
are used to indicate the closeness of
results,
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47, Let us first calculate the

'uniform' compenents of delay, queue

length and stop rate which are tha same for
both formulae. The uniform queue length

from ean (2) is Ny = 0.364x70 = 25.5 veh,

the uniform delay form the first term of

eqn {5) or egn (8) is

Oy * 36.4 {1-0.3)2/2(1-0.27) = 12.22 veh-h/h.
and the uniform stop rate from the first term
of ean (16) is hu = (1-0.3})/(1-0.27) = 0.96.

45, Let us now calculate the overflow
queue, the averaae gqueue at start green and
the total delay.

(a) The Webster method: The calculation of
total delay is required first. From
the second and third terms of enn (5),
which are together considered to be
the random delay terw, Dy = 3.05 veh-h/h,
hence the total delay is D = 12.22 +
3.05 = 15.27 veh-h/h. The overflow
queue from egn (4) is No = 15,27 - 0.364
x 70/2 = 2.5 veh and the average queue
at start grean in N = Ny + Ny = 25.5
+ 2.5 = 28.0 veh.

{h) The Miller method: From ean {10),
Ny = 2.4 veh (using B = 00,628},
Therefore N = 25,5 + 2.4 = 27.9 which
is practically the same as the queue
Tength from the Webster methnd (28
vahicles). The random delay from
ean (9) is Dp = (1-0.2) x 2.40/(1-0.27)
= 2.30 veh-h/h, hence the total delay
from Miller's formula is
D=12.22 + 2.30 = 14.52 veh-h/h
(5 per cent less than that given by
the Webster formula).

49, Finally, let us calculate the stop
rate and the total number of stons. Llet us
use Ng = 2.4 calculated from Miller's

formula. From egqn (19), the stop rate is
found h = 0.9 x {0.96 + 2.4/36.4) = 0.9 x
1.0626 = 0.92 stops per vehicle (0.9 h, = 0.9

% 0,96 = 0.86 stops per vehicle is due to
uniform stops). The total number of stops
from eqn (11) is H = 1310 x 0,92 = 1210
vehicle stops per hour (or from eqn 20,

H = {3240/100) x (25.5/0.73 + 2.4) = 1210).

APPENDIX B
STOP REDUCTION FACTOR

50. The time for a vehicle to
decelerate from speed v down to speed v',
and to accelerate hack to speed v is:

t- s (v) (el (24)

where the deceleration and acceleration

rates, a; and a, are hoth positive and assumed
to be constant. The partisl stop time which
corresponds to the stop line delay is

t' o= (te+ty)/2 (see Fig 2).
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51. Therefore, the time for a complete
stop (v'=0) is:
T S 5
t=s (al * ag) (250

Assumina, a; = a; = a, the simpler formulae,
t' = (v-v'}/a and t = v/a are found.

For example, v = 60 kph = 16.7 m/s,

v'=20 kgh = 5.6 m/s, and a = 1.1 m/s< give
t' = 10 s and t = 15 &,

52. The stop reduction values, r, to be
associated with the individual delay values
of less than t seconds can be caiculated

as foilows. Assume that the fuel consumption
(or a particulzr pallutant emission) rates
{or cost, etc.} associated with speed changes
{v-v'-v) and {v-D-v) are k' and k,
resnectively, Then, the proportion of stop
to he associated with a partial stop time,
t', is g = k'/k, The value of B will vary
between cne for time t' = t {full stop} and
zero for time t' = 0 (undelayed vehicle).

53. Using the fuel consumption data

for complete and partial stops given by
Claffey (1971}, the relationship between the
stap raduction value, 8, and the partial
stop time, t', has been found to be
approximately Tinear for a cruising speed,
v, of about 60 km/h, On the other hand,

the data recommended by Robertson and

Gower (1977) for use with the stop reduction
facility of the TRANSYT/6 computer progrem
indicates an exponential relaticnship

(see Fig 5}.

100 —

-

80 P

’/’Af’

20 f—o

PERCENTAGE OF STOPS PER SECOND OF DELAY

DELAY
(s)

Fig 5 - bata for partial stops
{Robertson and Gower 1977)

54, Under the assumption of regular
arrival headways, the delay as a function

of the vehicle arrival order is linear, and
varies from r (effective red period) for the
first vehicle in the quene to zero for the
last vehicle in the queue (see Richardson
1979). Under this assumption, and when the
relationship between the stop reduction
value, g, and the partial stop time, t',
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is linear, the number of complete
stops per vehicle, i.e. the uniform
stop rate, is:

=

hy = fu (28)

—l
<|

where f; is a2 stop reduction factor which is
given by:

t

fu=1- 252 (1-y) {27}
where t = time for a complete stop {eqn 25),
r = effective red time, and
y = flow/saturation flow ratio.
55. If the (g,t') relationship is

exponential as shown in Fig 5, the value
of the stop reduction factor, fu, will be
higher {i.e. less reduction) than that
given by ean (27). This has been tested
using the uniform stop reduction facility
of the TRANSYT/6 program,

56. The stoo reduction factor given

by eqn (27} dees not allow for the effect
of oversaturated cycles in which most
vehicles make at least one complete stop.
Tha following method can be used for the
calculation of f to allow for this (for use
in ean (18)). Firstly, calculate the
saturation time, gg = N/(s-q}, where

N =qr + Ng as in ean {2). If gg is larger
than the green time, g, calculate the stop
raduction time tf = t - (gs-g). where t is
the time for a complete stop. Then,
caiculate the stop reduction factor using
the appropriate formula given below:

- L
f=1-5r4gg) forgssd (28)
?
+2
f=1- f for g5 ~ g and

2ct
te > 0 (29)
for g¢ > g and

ty 5 G (30)

where t, tf, gg are as described above, ¢
is the cycle time, and r is the red time.

For the examole gqiven in Appendix A,
gs = 28/(1.333-0.364) = 29 s, and since
gg < g, f = 1-15/2(70+29) = 0.92 is found.

57, Various values of f calculated from
ean (28) to (30) using t = 15 s are given

in Table II for various (x, sg, u, ¢} values.
It is seen that the reductions due to partial

stops are higher for light traffic conditions.

For desirable operating conditions during
peak traffic periods (degrees of saturation
of 0.70 to 0.90 and cycle times of 80 to
120 s}, 2 stop reduction factor of
approximately 0.9 is a typical value. This
figure has been chosen as a general
reduction factor in the recommended formila
for calculating stop rates at isolated
traffic signals (eon 19}.
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TABLE II

STOP REDUCTION FACTORS, f

The value of f

% — ..
{a) (h) (ci

0 0.63 0.81 0.88
0.5 0.69 0.86 0.91

n.7 0.73 0.88 0.93

0.9 0.96 0.93 0.94
0.95 1.0 1.0 1.0

(a) sg =5, u=0.33, ¢ = 30

(b) sg =20, u= 0.56, ¢ = 80
(c) sg = 40, u = 0.57, ¢ = 140
58. The calculation of a precise value

of the stop reduction factor, f, should allow
for the fact that the drivers may adjust
their deceleration rates according to traffic
conditions, that the deceleraticn-acceleration
rates vary according to the vehicle typ=
(traffic composition), and that the
deceleration and acceleration rates are not
constant. The assumption of a linear
relationship between tha stop reduction
value, %, and the partial stop time, t°,

can also be relaxed, and other reiationshins
can be accommodated. However, the

resulting complications may rot be justified
for a small improvement in the accuracy of
the predicted stop rate.
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