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Travel time functions for transport planning purposes: 
Davidson's function, its time-dependent form and an 
alternative travel time function 

Rahmi Akçelik 

ABSTRACT  
A travel time function proposed by Davidson for transport planning purposes has been 
subject to much discussion and efforts of calibration including some controversy over the 
meaning of its parameters.  Modified forms of Davidson's function have been proposed to 
obtain finite values of travel time for flows near and above capacity.  This paper presents a 
time-dependent form of the original Davidson function, derived using the coordinate 
transformation technique.  The modified form of Davidson's function proposed by Tisato 
(1991) is shown to overpredict travel times for flows near and above capacity compared with 
the time-dependent form.  The derivation of the original Davidson function is discussed and it 
is concluded that the function suffers from an inconsistency in its basic parameter definitions.  
An alternative interpretation of the delay parameter is considered, but this leads to another 
inconsistency.  A new travel time function is proposed as an alternative to Davidson's 
function to overcome the conceptual and calibration problems.  In the proposed function, the 
delay parameter takes a meaning consistent with the formulae used for estimating 
intersection delays.  Both the steady-state and time-dependent forms of the new function are 
given.   

 

 

 

DISCLAIMER: The readers should apply their own judgement and skills when using the 
information contained in this paper.  Although the author has made every effort to ensure that the 
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does not endorse products or manufacturers.  Any trade or manufacturers' names appear in this paper 
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Introduction 

The travel time function proposed by Davidson (1966, 1978) for transport planning purposes 
has been subject to much discussion and efforts of calibration and improvement including 
some controversy over the meaning of its parameters.  For a general discussion on the 
usefulness of the Davidson function, see Rose, Taylor and Tisato (1989).   

Modified forms of Davidson's function have been proposed to obtain finite values of travel 
time for flows near and above capacity.  Tisato (1991) makes new suggestions for improving 
Davidson's function based on the author's earlier work (Akçelik 1978, 1981).   

This paper presents the time-dependent form of the original Davidson function, derived using 
the coordinate transformation technique, which was used for intersection delay functions in 
the past (Akçelik 1980, 1981).  Tisato's function is shown to overpredict travel times for 
flows near and above capacity compared with the time-dependent form. 

The derivation of the original Davidson function is discussed and it is concluded that the 
function suffers from an inconsistency in its basic parameter definitions as pointed out by 
Golding (1977).  An alternative interpretation of the delay parameter is considered, but this 
leads to another inconsistency. 

A new travel time function is proposed as an alternative to Davidson's function to overcome 
the conceptual and calibration problems.  In the proposed function, the delay parameter takes 
a meaning consistent with the formulae used for estimating intersection delays.  Both the 
steady-state and time-dependent forms of the new function are given (for detailed discussion 
on the subject of steady-state and time-dependent function forms, refer to Akçelik 1980).   

The similarity of the form of time-dependent functions given in this paper to the conical 
congestion functions proposed by Spiess (1990) to overcome the shortcomings of the well-
known US Bureau of Public Roads (BPR) function is also interesting.  The function proposed 
here has the advantages of relating to intersection delay modelling and providing explanatory 
power for the function parameters. 

Davidson's function 

The following function was proposed by Davidson (1966) as a general-purpose travel-time 
formula for transport planning purposes: 

t = to [1 + JD x / (1 - x)] ( 1 ) 

where  
t  =  average travel time per unit distance (e.g. in seconds per km), 
to  =  minimum (zero-flow) travel time per unit distance  
  (e.g. in seconds per km), 
JD =  a delay parameter (or 1 – JD = a quality of service parameter),  
x  =  q / Q =degree of saturation, 
q  =  demand (arrival) flow rate (in veh/h), and 
Q  =  capacity (in veh/h). 
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Davidson (1966, 1978) derived this function from concepts of queuing theory but a direct 
derivation has not been clearly demonstrated.   

Davidson modified the well-known steady-state delay equation which is for a single channel 
queuing system with random arrivals and exponentially distributed service rates: 

d = (1 / Q) + x / [Q (1 - x )] ( 2 ) 

where the first term is the service time (reciprocal of the mean service rate) and the second 
term is the queuing delay. 

As the mean service rate, Davidson used saturation flow (s) rather than capacity (Q) in 
Equations (1) and (2) above.  These two parameters have the same value for uninterrupted 
traffic facilities (e.g. freeways), but capacity rather than saturation flow needs to be used for 
interrupted facilities (e.g. for traffic signals where capacity equals saturation flow multiplied 
by the ratio of green time to cycle time).  This point was discussed in some detail by Tisato 
(1991).   

A distinction between saturation flow and capacity is important for the purpose of calibrating 
the function and for a clear understanding of the meaning of its parameters. 

To obtain Equation (1) from Equation (2), Davidson multiplied the queuing delay term by a 
delay factor (JD), and equated the service time of the queuing system (1/Q) with the zero 
travel time of the road section (to): 

to = 1 / Q ( 3 ) 

This equation has an inherent inconsistency that has caused confusion in explaining the 
meanings of parameters in Davidson's function and frustration in efforts to calibrate the 
model.  The inconsistency of Equation (3) is due to its implication that the capacity can be 
defined as Q = 1/to and the degree of saturation as x = q to, which is rather meaningless. 

The question of inconsistency in Equation (3) was raised by Golding (1977).  In his response, 
Davidson (1978) elaborated on the meaning of the delay parameter (JD) by considering a 
number of delay-producing elements (service facilities) along the road section, but he still 
assumed the basic relationship expressed in Equation (3). 

Blunden (1978) distinguished between barrier and continuously distributed traffic elements, 
and explained that the classical queuing theory models apply to barrier-type elements and 
these do not provide a rigorous theoretical basis for travel time on a continuously distributed 
traffic element such as a length of highway.  Blunden stated that he originally suggested the 
type of travel time function expressed by Equation (1), and gave the explanation that the 
apparent lack of reciprocity between to and s (or Q) is due to the arbitrary definition of the 
unit length (the mean service time becomes the zero travel time per unit distance). 

The implications of Equation (3), i.e. replacing 1/Q by to as a service time, in relation to the 
definitions of capacity and degree of saturation are not acceptable from the viewpoint of delay 
formulation.  A change in the definition of the delay parameter JD may be sought to avoid this 
inconsistency, but this leads to another inconsistency as explained below. 
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A different interpretation of the delay parameter 

Let us consider deriving a travel time function by assuming that the zero-flow (minimum) 
travel time is simply the sum of the free-flow travel time (tf) along the section of road (if there 
were no barrier-type delay elements) and the service time of the delay element (1/Q).  Let us 
consider a single delay element for the sake of simplicity.  The generalisation to the case of N 
delay elements in series each with the same capacity Q (in vehicles per second), and hence the 
same service time 1/Q (in seconds), as considered by Davidson (1978) does not affect the 
conclusions. 

Thus, the zero-flow travel time is given by: 

to = tf  + (1 / Q)  ( 4 ) 

where the free-flow travel time (tf) in seconds per km is: 

tf  = 3600 / vf ( 5 ) 

and vf is the free-flow speed (km/h). 

A general form of the steady-state queuing delay at a traffic interruption point (e.g. an 
intersection) is given by 

dq = k x / [Q (1 -x)] ( 6 ) 

where k is a delay parameter which depends on the level of randomness (or regularity) of the 
arrival and service processes.   

Davidson (1978) considered this form of the queuing delay formula for a queuing system with 
random arrivals and an Erlang distribution of service times.  He quoted a formula equivalent 
to Equation (6) with k = (K+1)/2K where K is the Erlang number. 

The special cases of parameter k for the case of random arrivals are k = 1 for exponential 
service times and k = 0.5 for regular (constant) service times.  The former has been used for 
unsignalised intersections, and the latter for signalised intersections (Webster's well-known 
second term).  A more general form of Equation (6) has been discussed by the author (see 
Akçelik 1990, Section 4, and Akçelik 1988).   

The travel time along a road section can be expressed explicitly as the sum of zero-flow 
(minimum) travel time and total queuing delay along the road section: 

t = to + Σ dq  ( 7 ) 

As a rough approximation to the real value of Σ dq, the delay parameter k in Equation (6) can 
be replaced by k' = p k where p is a parameter which represents the intensity of delay elements 
along the section of road (e.g. the number of intersections per unit distance).  If there are 
different types of delay elements on the road section, then k' can be considered to be a 
weighted average of individual delay elements (see the Discussion section regarding the 
important question of capacity changes between delay elements which is ignored at this 
point!).   
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Thus, Equation (7) can be expressed as: 

t = to + k' x / [Q (1 - x)]  ( 8 ) 

To derive a function of the same form as Equation (1), the delay parameter must be defined 
as: 

JD = k' / (Q to) = k' / (Q tf + 1)  ( 9 ) 

so that, from Equations (8) and (9), we have: 

t = to + JD to x / (1 - x) = to [1 + JD x / (1 - x)] ( 10 ) 

Although Equation (10) appears to be the same as Davidson's function (Equation 1), it has a 
different definition of the delay parameter (JD).  Unfortunately, while this formulation 
removes the basic inconsistency resulting from Equation (3), it introduces another since 
Equation (9) implies that the delay parameter decreases as the minimum travel time (to) 
increases.  This means that the quality of service improves as the free-flow travel time (tf) 
increases.  This conflicts with the expectation of lower free-flow travel times on better quality 
roads (e.g. freeways).  Thus, in removing the inconsistency of Equation (3), an inconsistent 
definition of the delay parameter is obtained in Equation (9). 

Alternatively, the only way to retain the form expressed by Equation (1) is to accept 
parameter k' as the true delay parameter and parameter JD as the delay parameter normalised 
by factor (Q to) as in Equation (9).  In this form, it is acknowledged that JD is not independent 
of capacity and zero-flow (minimum) travel time, and that a lower JD does not necessarily 
correspond to a better quality road. 

This definitional inconsistency may explain some of the difficulties encountered in calibrating 
the delay parameter (JD) of the original Davidson formula (Taylor 1977a,b,c). 

Time-dependent form of Davidson's function 

The time-dependent form of Davidson's function (Equation 1) derived using the coordinate 
transformation technique, which was used for intersection delay functions in the past (Akcelik 
1981), can be expressed as 

t = to {1 + 0.25 rf [z + (z2 + 8 JD x / rf)
0.5]} ( 11 ) 

where  
t =  average travel time per unit distance (e.g. in seconds per km), 
to = minimum (zero-flow) travel time per unit distance (e.g. in seconds per km), 
JD = a delay parameter,  
z = x - 1, 
x = q / Q =degree of saturation, 
q = demand (arrival) flow rate (in veh/h),  
Q = capacity (in veh/h),   
rf  = Tf / to, i.e. ratio of flow (analysis) period to minimum travel time  
  (Tf and to must be in the same units): 
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The delay parameter JD in Equation (11) can be considered to be either the normalised value 
(JD = k' / (Q to)) as given by Equation (9), or a fixed value as in the original Davidson function 
(Equation 1) which assumes to = 1/Q (Equation 3). 

Flow period is the time interval during which an average demand flow rate, q, persists.  
Travel time increases as the flow period increases.  The corresponding steady-state function 
(Equation 1) assumes infinite flow period.  The time-dependent function assumes no initial 
queue at the start of the flow period.  A constant demand pattern (i.e. no peaking) is assumed.  
Demand (arrival) flows are measured at the back of the queue, not at the intersection stop line 
or the bottleneck point.  Therefore, bottleneck conditions and backward spread of congestion 
in networks of closely-spaced intersections must be taken into account when applying the 
time-dependent travel time function. 

In Equation (11), the travel time is defined as experienced by all vehicles arriving during the 
specified flow period.  Thus, some of these vehicles may leave the road link under 
consideration after the specified flow period, depending on the level of congestion (degree of 
saturation).  The corresponding delay measurement method is the instrumented car or a 
vehicle path trace method which measures the difference between arrival and departure times 
of individual vehicles.  This travel time definition is appropriate in the context of transport 
planning/traffic assignment where route choices of individual vehicles are the main concern. 
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Figure 1 – Travel time graphs representing Davidson's original function, its modified form 
proposed by Tisato, and its time-dependent form given in this paper  

(Tf = 1 h, vo = 80 km/h and JD =0.4) 
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Travel time graphs representing Davidson's original function (Equation 1), its modified form 
proposed by Tisato (1990, Equation 15), and its time-dependent form given in this paper 
(Equation 11) are shown in Figure 1 for Tf = 1 h, vo =1 / to = 80 km/h (to = 0.0125 h/km) and 
JD =0.4.  It is seen that all three functions predict the same travel time for low to medium 
degrees of saturation (approximately x < 0.7), but the differences between the time-dependent 
function and the other two functions are substantial for near capacity conditions.  Tisato's 
function is seen to overestimate travel times for near and above capacity conditions compared 
with the estimates obtained from the time-dependent function. 

An alternative time-dependent travel time function 

The limitations of the steady-state form of Davidson's travel time function (Equation 1) apply 
to its time-dependent form (Equation 11).  This is due to the definitional problems inherent in 
the relationships given in Equations (3) and (9) which manipulate the meaning of minimum 
travel time or the delay parameter in order to obtain the convenient functional form expressed 
in Equation (1). 

The problems of Davidson's function can be avoided by developing a different functional 
form that uses the free-flow travel time and queuing delay terms in an explicit way.  For this 
purpose, the minimum (zero-flow) travel time can be expressed as: 

to = tf + Σ dm   ( 12 ) 

where Σ dm is the sum of minimum (zero-flow) delays along the road section.  For example, at 
signalised intersections, minimum delay is the value of uniform delay term for x = 0 (see 
Akçelik 1981, 1990).  The minimum delay formula for roundabouts and other unsignalised 
intersections can be found in Akçelik and Troutbeck (1991).  The mean service time (1/Q) 
used in Equation (4) is the minimum delay in a simple queuing system sense.  The geometric 
delays would be included in the minimum delay values.  Using real-life data, the minimum 
travel time can be estimated from travel times measured under low flow conditions. 

Instead of Equation (9), the delay parameter can be defined as 

JA = k' = p k   ( 13 ) 

where p is a parameter which represents the intensity of delay elements along the section of 
road (e.g. the number of intersections per unit distance).   

The steady-state form of the travel time function based on Equations (12) and (13) is similar 
to Equation (8): 

t = to + JA x / [Q (1 - x)] = to [1 + JA x / (Q to (1 - x))] ( 14 ) 

The corresponding time-dependent travel time function is: 

t = to + 0.25 Tf [z + (z2 + 8 JA x / (Q Tf))
0.5] ( 15 ) 

  = to {1 + 0.25 rf [z + (z2 + 8 JA x / (Q to rf))
0.5

]} 

where all parameters are as in Equation (11) except the delay parameter, JA.   
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As for the time-dependent form of Davidson's function given in the previous section, 
Equation (15) assumes a constant demand pattern (i.e. no peaking) and no initial queue at the 
start of the flow period, and the travel time is defined as experienced by all vehicles arriving 
during the specified flow period.   

Note that, for a signalised intersection, the travel time above the zero-flow value in 
Equation (15) includes that part of the uniform delay term (Akçelik 1981, 1990) representing 
the delay above the minimum delay value (as defined for Equation 12).  Therefore, an 
appropriate value of k for isolated signals could be 0.6, and for coordinated signals, k = 0.3 
could be used.  For roundabouts and other unsignalised intersections, k = 1.0 is appropriate.  
The effects of any delays during cruise between intersections (the decreased stream speed due 
to increased flow and mid-block pedestrian crossings, bus stops, etc) would also be included 
in the delay parameter.  For uninterrupted facilities (freeways) where external friction is 
minimal, JA = 0.1 could be appropriate.   

The delay parameter (JA) in Equations (14) and (15) corresponds to the quality of service 
provided by the road section and is independent of the (Q to) factor in Equation (9).  For 
example, for a road section with one signalised intersection (k = 0.6) along a 4-km road 
section, p = 0.25 and JA = 0.15.  On the other hand, for a road section with four linked 
signalised intersections along a 1-km road section, p = 4.0, k = 0.3 and JA = 1.2.   

The value of travel time at capacity (t = tm for x = 1.0) can be calculated from Equation (1).  
For example, using Tf = 1 h: 

tm = to + (0.5 JA / Q)0.5  ( 16 ) 

This formula can be used for obtaining rough estimates of the delay parameter.  For example, 
Spiess (1990) adopts the BPR definition of the capacity as the volume at which congested 
speed is half the free-flow speed, i.e. tm / to  = 2.0.  Using this in Equation (16) and putting vo 
= 1 / to, JA = 2 Q / vo

2 is obtained. For example, using Q = 2000 veh/h and vo = 120 km/h for 
uninterrupted flow conditions (freeway), JA = 0.28 is found.  On the other hand, tm / to = 1.5 
for the same data would give JA = 0.07.  This shows the sensitivity of the delay parameter to 
the value of travel time at capacity. 

Considering the difficulties of travel time measurement under congested traffic conditions, an 
appropriate way to calibrate the time-dependent function is to determine the value of the delay 
parameter JA in the corresponding steady-state queuing delay function (Equation 14) using 
data points for medium to high flow (but not oversaturated) conditions (e.g. for x in the range 
0.4 to 0.95).  The resulting delay parameter estimate would be less dependent on the choice of 
the flow period (Tf) in this case.  Direct estimation of minimum travel time and capacity 
parameters for use in the function before deriving the delay parameter is recommended.  
Errors in the estimation of these parameters would be taken up by the delay parameter.   

The travel time graph representing Equation (15) for Tf = 1 h, vo = 80 km/h (to = 
0.0125 h/km), Q = 800 veh/h and JA =0.4 is shown in Figure 2.  From Equation (16), the 
travel time at capacity for this case is tm / to = 2.27.  Figure 2 also shows the graph 
representing Equation (11) with JA = 0.4 (Tf = 1 h and vo = 80 km/h), which is the same as the 
graph representing the time-dependent function in Figure 1.  Note that this corresponds to 
Equation (15) with Q = 800 veh/h (Q to = 1.0), and JA =0.4.  The corresponding travel time at 
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capacity is tm / to = 5.0 which is considered to be too large (or the corresponding speed, vm = 
80 / 5.0 = 16 km/h is too small).  Also comparing with Figure 1, the results in Figure 2 
indicate that Davidson's original function, its time-dependent form (Equation 11) and Tisato's 
function overestimate travel times for near (and above) congested conditions substantially 
compared with the alternative time-dependent function given by Equation (15). 

Travel time-flow graphs from Equation (15) representing five road classes (as defined in 
Table 1) are shown in Figure 3 (Tf = 1 h).  The corresponding speed-flow graphs are shown in 
Figure 4.  Table 1 and Figures 3 and 4 serve to illustrate the range of parameter values that 
can be expected from real-life data.  These graphs were derived by making assumptions about 
the minimum speed, capacity per lane and delay parameters for some broadly defined road 
classes.   
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Figure 2 – Travel time graphs representing the time-dependent form of Davidson's 
function (Equation 11) for Tf = 1 h, vo = 80 km/h, JD =0.4, and the alternative function 

(Equation 15) proposed in this paper for Tf = 1 h, vo = 80 km/h, Q = 800 veh/h and JA =0.4 
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Table 1 

Parameters for travel time functions representing various road classes (Tf  = 1 h) 

Road Class Description vo 
(km/h) 

Q  
(veh/h/lane) 

JA  vm / vo 

1 Freeway 120 2000 0.1 0.63 

2 Arterial 
(uninterrupted) 

100 1800 0.2 0.57 

3 Arterial 
(interrupted) 

80 1200 0.4 0.49 

4 Secondary 
(interrupted) 

60 900 0.8 0.44 

5 Secondary  
(high friction) 

40 600 1.6 0.41 
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Figure 3 – Travel time-flow graphs (Equation 15) representing five road classes  
as defined in Table 1 
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Figure 4 – Speed-flow graphs (corresponding to Figure 3) for five road classes  
as defined in Table 1  

 

 

Discussion 

The new travel time function given in this paper (Equation 15) could overcome various 
problems with Davidson's function and its modified forms proposed previously.  Although 
this function can be used for individual road links (a link corresponds to one traffic control 
element, e.g. an intersection), it may be more appropriate to use it as an aggregate function for 
a series of links described as a composite link (see Rose, Taylor and Tisato (1989) for a 
discussion of the hierarchy of travel time functions).   

The loss of accuracy which results from combining a series of links with different traffic 
characteristics as a single composite link should be kept in mind when interpreting the 
parameter values obtained by calibrating the travel time function proposed in this paper.  In 
particular, the following points should be remembered (these points also apply to the original 
Davidson function and its modified forms, and may explain some of the difficulties 
experienced in efforts to calibrate such functions). 

(a) The theoretical basis of the delay term used in the travel time function requires a lane-
by-lane application.  Therefore, it would be better to apply the function to the critical 
lane on the section of road under study.  This requires that the flow and capacity values 
in the function are single lane values.  Using this method, the problem of different 
numbers of lanes on different links constituting the section of road is avoided.  Another 
reason for this type of analysis is the need to allow for the effect of unequal lane 
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utilisation.  For the purpose of simplification, equal lane capacities can be assumed, and 
the critical lane flow (qc) can be calculated from 

qc = q / Σ ρi  ( 17 ) 

 where q is the total flow and ρi is the lane utilisation ratio for lane i.  Assuming equal 
lane capacities, the lane utilisation ratio is defined as ρi = qi / qc where qi is the flow in 
lane i and qc is the flow in the critical lane.  For fully utilised lanes, ρi = 1.0, and for 
underutilised lanes ρi < 1.0.  For example, for q = 3000 veh/h, Qi = 900 veh/h per lane, 
4 lanes with one lane underutilised (ρi = 0.50), the critical lane flow from Equation (17) 
is qc = 3000/(3x1.0 + 0.5) = 857 veh/h.  The capacity and the degree of saturation flow 
for use in Equation (15) are Q = 900 veh/h and x = xc = 857 / 900 = 0.952, respectively.  
If all lanes are used equally, qc = 3000/(4x1.0) = 750 veh/h and x = xc = 750/900 = 
0.833.  See Akçelik (1981), for a general discussion of the subject of lane utilisation.   

(b) When several links in series are combined and replaced by one aggregate link, the 
minimum travel times are added, and the delay parameter can be considered to be a 
weighted average of individual delay elements of all links on the section of road.  
However, the question arises as to determining the capacity of the composite link.  
Firstly, note that individual links on the road section can have different number of lanes, 
but the method of using a critical lane to represent travel conditions on the road section 
avoids this problem.  The capacity of the composite link should be the smallest capacity 
for any link as this becomes the bottleneck point which is important in the analysis of 
oversaturated conditions and for the modelling of the backward spread of congestion in 
the network.   

Considering these points, it seems unlikely that a calibration method which simultaneously 
derives all three parameters of the travel time function (minimum travel time, capacity and 
delay parameter) by regression analysis would yield reliable values.  This is in line with the 
findings of Taylor (1977a,b,c).   

It is recommended that minimum travel time and capacity are determined externally 
considering the above points, and the delay parameter is derived by regression analysis using 
the specified minimum travel time and capacity values.  The interpretation of the delay 
parameter which is obtained form this process should consider the type and intensity of delay 
producing elements on the road section.  The effect of traffic composition (relative 
proportions of light and heavy vehicles) on the calibration parameters should also be 
considered.   

It also appears that a link level analysis would enable better analysis of oversaturated 
conditions particularly due to better identification of bottleneck points.  For the link level 
analysis, a better form of the travel time function would use explicit (separate) modelling of 
the free-flow travel time and the delays along the link and at the intersection (node) 
controlling the link.  This would allow for the use of available intersection delay formulae 
directly, and would have the benefit of making use of any future developments in intersection 
modelling (for example better modelling of platooned arrivals, queue interaction and variable-
demand modelling) without the need to derive new functions for transport planning purposes. 
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