Akcelik & Associates Ply Ltd
PO Box 1075G, Greythorn, Vic 3104 AUSTRALIA
info@sidrasolutions.com

Management Systems Registered to ISO 9001
ABN 79 088 889 687

@

REPRINT

Overflow Queues and Delays with Random and Platooned Arrivals at
Signalized Intersections

R. AKCELIK and N. M. ROUPHAIL

REFERENCE:

R. Akgelik and N. M. Rouphail (1994). Overflow Queues and Delays with Random and Platooned
Arrivals at Signalised Intersections.
Journal of Advanced Transportation, Vol. 28, No. 3, pp. 227-251

NOTE:

This paper is related to the intersection analysis methodology used in the SIDRA INTERSECTION
software. Since the publication of this paper, many related aspects of the traffic model have been further
developed in later versions of SIDRA INTERSECTION.

Though some aspects of this paper may be outdated, this reprint is provided as a record of important
aspects of the SIDRA INTERSECTION software, and in order to promote software assessment and
further research.

© Akcelik and Associates Pty Ltd / www.sidrasolutions.com
PO Box 1075G, Greythorn Victoria 3104, Australia
Email: info@sidrasolutions.com



Journal of Advanced Transportation, Vol. 28, No. 3, pp. 227 - 251.

Overflow Queues and Delays with Random and
Platooned Arrivals at Signalized Intersections

Rahmi Akgelik
Nagui M. Rouphail

The traditional two-term analytical model for predicting delays,
queues and stops with random arrivals as found at isolated signalized
intersections is extended to the case of platooned arrivals. The work was
carried out in the context of modeling traffic performance at signalized
paired intersections. A cycle-by-cycle macroscopic simulation model
was used to calibrate the overflow terms of the performance formulae for
a single stream of platooned arrivals at the downstream approach of a
paired intersection system. The steady-state form of the analytical model
was used for calibration. The parameters derived for the steady-state
model are thenused inthe time-dependent form of the model. Descriptions
of the general analytical model, the cycle-by-cycle simulation model, its
validation against several well-known models are presented, and the new
models derived from this study are described. Extension of the model to
multistream, multiphase applications are discussed and areas of further
study are identified.

Introduction

This paper deals with modeling of overflow delays and queues
with random and platooned arrivals at signalized intersections. The
work was carried out in the context of modeling traffic performance at
signalized paired intersections (Johnson and Akgelik 1992; Rouphail
and Akgelik 1991, 1992a). Examples of paired intersections include
diamond interchanges, closely-spaced intersections, staggered T junc-
tion, large intersections with internal queueing (e.g. due to a wide
median). This type of intersection operation has been increasingly
more common with the proliferation of signalization in urban street
networks.

From a traffic modeling viewpoint, the paired intersection system
can be characterized as follows (see Fig 1):

(1)  Arrivals at upstream (external) approaches are consid-
ered to be random, with traffic encountering no major
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Approaches.
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interruptions prior to reaching the upstream approach.

(i)  Arrivals at downstream (internal) approaches occur
primarily in platoons which are formed due to queueing
atupstream approaches. Thus, downstream operation is
governed by the size, density and timing of the arriving
platoons.

(ii1))  Vehicles in platoons maintain their headways during
travel between the intersection pair (negligible platoon
dispersion due to the close proximity of stop lines).

(iv)  Midblock traffic generation/absorption is considered
negligible, in view of the restrictive geometry between
the intersection pair.

(v)  Afinite queueing space exists at the downstream inter-
section. Should demand exceed the queueing capacity,
blockage of the upstream stop line may occur. No such
restrictions exist on the size of queues at the upstream
approaches.

(vi)  Under certain combinations of queueing space, demand
levels and signal control parameters, a reduction in the
upstream intersection saturation flow rate may occur
due to the interference of the downstream queue.

The processes described in items (v) and (vi) are termed queue
interaction. Description of a preliminary model of queue interaction
and an assessment of existing analytical software in describing queue
interaction are given elsewhere (Johnson and Akgelik 1992; Ove Arup
& Partners 1991; Rouphail and Akgelik 1991, 1992a).

This paper is organized as follows. First, a brief assessment of
existing methods is given, and the methodology used in this study is
presented. Next, the special simulation program used for calibrating the
analytical models is described, and the analytical models for random
and platooned arrivals are given. Finally, proposed enhancements and
extensions of the model are discussed.

Background

The following criteria may be used in order to evaluate the
effectiveness of existing methods in modelling random and platooned
arrivals:

(a)  Platoon generation logic: This refers to the ability of the
model to construct departing platoons at the upstream
stop line which are then projected to the downstream
approach.
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(b) Maximumdeparture flow logic: When demand flows at
the upstream intersection exceed capacity, discharge
flows occur at capacity.

(c)  Flow variance logic: When the upstream intersection is
at or above capacity, departures become virtually uni-
form from cycle to cycle. This aspect is critical in
predicting the size of the downstream random queues
and delays.

(d) Maximum queue length logic: A realistic algorithm
should predict queue lengths which can not exceed the
physical queueing space between the intersection pair.

A review of a number of well-known network signal evaluation/
optimization models in use in Australia and the U.S. revealed that
criteria (b), (c) and (d) were not met. The models reviewed were
TRANSYT-7F (Federal Highway Administration 1983) and PASSER
II-87 (Chang, Messer and Garza 1988) in the U.S. and the SCATES
model (RTA-NSW 1991) in Australia. Detailed documentation of this
review is given in Ove Arup & Partners (1991) and Johnson and Akgelik
(1992). In most cases reviewed, queues are modeled vertically at the
stop line, with no consideration given to the possibility of queues
exceeding the available queueing space. Furthermore, the computation
of the effects of random queues and delays are often based on formulae
which are insensitive to the arrival flow variance.

In reality, the random nature of arrivals is significantly dampened
at the upstream approach when it operates at high levels of saturation.
To ignore this phenomenon would result in overestimating queue
lengths and delays, and consequently in the assignment of additional
green time on the approach and the degradation in performance for other
movements. Empirical evidence of the effect of upstream platooning on
overflow delays and queues is given by Hillier and Rothery (1967) and
more recently by Van As (1991). Theoretical models of stochastic
delays and queues which support this evidence have been set forth by
Newell (1989, 1990).

Thus, the need for developing analytical tools for predicting traffic
performance with specific emphasis on platoon modeling, flow vari-
ance-based random queues and delays, and queue interaction models
was established.

The analytical models described in this paper can be incorporated
into existing traffic analysis software such as SIDRA (Akgelik 1990a,
b; Akgelik and Besley 1991), the Highway Capacity Software (1985),
and the network analysis packages mentioned earlier. It is important to
note that the existing arterial and network analysis methods are based on
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modelling traffic streams on a lane group or movement basis, whereas
the lane-by-lane level of detail as used in SIDRA is desirable for paired
intersection design.

Methodology

The proposed methodology is to extend the simple two-term
analytical performance model (Akgelik 1980, 1981, 1988, 1990b) used
for random arrivals (isolated intersections) to the platooned arrivals
case. The general analytical model provides an integrated framework
for predicting delay, queue length and stop rate. The formula for each
of these performance statistics consists of two terms (components),
namely a non-random term and an overflow term.

A cycle-by-cycle (macroscopic) simulation model was developed
specifically for this study to assist with the development of analytical
models, in particular with the overflow terms of the performance
formulae. The need to use simulated data stems from the requirement
that cyclic (non-random) and random delays and queues be estimated
separately. The intention is to relate the stochastic delays and queues
to the arrival type (random vs platooned) as well as to the flow variance.
Since microscopic traffic simulation models do not consider the two
components independently, e.g. NETSIM (Federal Highway Admin-
istration 1980), they could not be used for this purpose.

For the non-random delay and queue components in the case of
platooned arrivals, the estimates from the TRANSYT model could have
been adequate. For the sake of consistency, however, the simulation
model was used as acommon tool to assist with the development of both
non-random and overflow components of the performance formulae.

The overflow component of the analytical model was derived by
calibration against the simulation results for random and platooned
arrivals using the steady-state form of the model. The parameters
derived for the steady-state model were then used in the time-dependent
form of the model.

Asaninitial step in the development of platooned arrival and queue
interaction models, only one traffic stream in a single green phase at the
upstream approach was considered. Extension of the model to
multistream, multiphase operations is discussed in the section Model
Extensions.

A brief description of the simulation model, its output and valida-
tion against several well-known models are given in the following
sections after the description of the general analytical model.

The analytical and simulation models described in this paper do
not include queue interaction considerations. A method to deal with the



232 R. Akgelik and N. Rouphail

effects of queue interaction has been described by Rouphail and Akgelik
(1991, 1992a). The models described in this paper should be adopted
together with the queue interaction method. Otherwise, the estimated
queue lengths may not be realized due to the physical queueing con-
straints of the system.

General Analytical Model

The general analytical model for the prediction of delays is first
described, and then the formulae for queue length and stop rate predic-
tion are given. The discussion on delay models given here is applicable
to queue length and stop rate models as well.

The average delay per vehicle, d, can be expressed as sum of two
delay terms:

where

dy=  non-random delay term (delay due to signal cycle ef-
fects calculated assuming non-random arrivals at the
average flow rate, either distributed uniformly through-
out the signal cycle, or in platoons arriving at the same
time each cycle), and

dy, =  overflowdelay termincluding effects of random arrivals
as well as any oversaturation delays experienced by
vehicles arriving during the specified flow period.

The two components of delay are discussed below.
The Non-Random Delay Component

Non-random delay is estimated by assuming that the number of
vehicles which arrive during each signal cycle is fixed and equivalent
to the average demand (arrival) rate per cycle. Different expressions are
used for the non-random delay term according to the arrival character-
istics (uniform, or platooned) and the signal characteristics (one or two
green periods).

For isolated intersections, the following formula known as the
uniform delay formula (for the case when arrivals are distributed
uniformly throughout the signal cycle) is commonly used as the first
term of most delay models (Webster 1958, Miller 1968, Akcelik 1981,
Teply 1984, Transportation Research Board 1985):
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2
d, = 0'51(:(—1”) forx <1.0
—ux
()
=05(c-g forx>1.0
where
c=  cycle time in seconds,
u= g/c (ratio of effective green time, g, to cycle time, ¢), and
x = degree of saturation (demand/capacity ratio) given by
x=q/Q (3)
where
q=  arrival (demand) flow rate during the specified flow
period in vehicles per hour (or per second),
Q= capacity under the specified flow conditions in vehicles
per hour (or per second) given by
Q=sg/c )

where s is the saturation flow rate in vehicles per hour or per second, and
g/ cisthe ratio of effective green time to cycle time, and sg is the capacity
per cycle in vehicles.

For platooned arrivals (the case when arrivals occur at different
rates during different intervals of the signal cycle), various analytical
models have been developed (Olszewski 1988, 1990a; Rouphail 1988,
1989; Fambro, Chang, and Messer 1991) for use instead of Eqn. (2).
The simplest method which can be adopted is the use of Progression
Factors (PF) to adjust the uniform delay formula for isolated intersec-
tion case (Fambro, et al., 1991):

0.5¢(1—u)?
d, = T PF (5)
where
PF=  progression adjustment factor given by
1-P
PF = m fat (6)

where P is the proportion of vehicles arriving during the green period (for
the isolated intersection case, P = u, hence PF = 1.0), and f,; is an
adjustment factor for early or late platoon arrivals.
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In this study, a more detailed analytical model was developed and
used for estimating the non-random component of the delays and queues
for single stream platoon arrivals (see Rouphail and Akgelik 1991).

The Overflow Delay Component

The overflow delay term in Egn. (1) represents the additional delay
experienced by vehicles arriving in a specified flow period. This delay
results from (i) temporary oversaturation due to the random nature of
arrivals or (ii) persistent oversaturation when the average flow rate
exceeds the capacity.

Two types of models for estimating the overflow delay can be
distinguished:

(i)  Steady-state models: These are the older type of models
which are based on the assumption that the demand
(arrival) flows persist for an infinite period of time.
Therefore, delay approaches infinity as the demand flow
approaches capacity. These models are able to estimate
delays only for below-capacity conditions (for degrees
of saturation approaching 0.95). They tend to overpredict
delays for high degrees of saturation due to the time-
dependence of demand flows.

(1)  Time-dependent models: These are the more recent
models which assume that the demand (arrival) flows
last for a finite period of time (flow period). Asaresult,
they are able to predict finite delay values at or above
capacity. Hence, the time-dependent models are appli-
cable to oversaturated conditions. The related issue of
variable-demand modelling is discussed in detail in
recent paper by Akgelik and Rouphail (1993) and
Rouphail and Akgelik (1992b).

The well-known coordinate transformation method can be used to
convert the steady-state form to a time-dependent form. As discussed
in Akcelik (1981, 1988, 1990a,b), the following simple time-dependent
formula provides a general expression for overflow delay:

_ 2 8k (X = Xo)
d2—900Tf[(X—-1)+ \/(X—l) +Q—Tf @)
for x> x, (zero otherwise)

where
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Tg=  duration of the flow period in hours,
x = degree of saturation in the specified flow period,
Xog=  thedegree of saturation below which the overflow delay
is zero (xp < 1.0),
k= adelay parameter which determines the rate of increase
in overflow delay with increasing degree of saturation,
and
Q= capacity in vehicles per hour.

The steady-state delay expression which corresponds to Eqn. (7) is:

_ k(x=xp)
“TQdw ®

Parameters k and xo which determine the shape of the overflow
delay curve can be derived by calibrating the steady-state expression
using data for undersaturated conditions (for x up to about 0.95).

In the Australian formula (Akgelik 1980, 1981, 1990b), k=1.5 and
a variable x( parameter are used which were found as an approximation
to Miller (1968) model:

xg = 0.67 + sg / 600 Q)

where sg = capacity per cycle in vehicles (s = saturation flow rate in
vehicles per second and g = effective green time in seconds).

A well-known formula which constitutes the second term of the
Webster’s (1958) steady-state model, and forms the basis of the time-
dependent delay model used in the Canadian capacity guide (Teply
1984) has k = 0.5 and xo = 0:

_ _0.5x
dg= -9 (10

This formula will be referred to as Webster’s second term for the
purpose of discussion in the following sections.

In this study, the overflow delay term was calibrated for steady-
state conditions using simulation results for degrees of saturation
approaching 0.95. The steady-state model expressed by Eqn. (8) was
used since, once calibrated, its time-dependent form is readily available
(Eqn. 7).

The new formulae for k and xg derived from the cycle-by-cycle
simulation results are given in Section 4. For further discussion on the
time-dependent delay model for isolated intersections, see Akgelik
(1980, 1981, 1990b) and Akgelik and Rouphail (1993).
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Queue Length and Stop Rate

The formulae for predicting the maximum back of queue in an
average cycle (Np) and the stop rate (h), which is the average number
of stops per vehicle, are similar to the delay formula:

h=h; +h, (12)
where
N1 hy = non-random components of queue length and stop
rate, and
N2, hy = overflow components of queue length and stop rate.

Equations for the non-random componets (Npy1, hj) for isolated
intersections can be found in Akgelik (1980, 1981, 1990b). Equations
for the case of a single stream with platooned arrivals are given in
Rouphail and Akgelik (1991).

The overflow component of maximum back of queue is equivalent
to the average overflow queue:

N, =Ny (13)
The average overflow queue can be calculated from:
Np=d,Q=d,sg/c (14)
where d, is the average overflow delay (Eqn. 7) and Q is the capacity in

veh /s (Eqn. 4).
The overflow component of stop rate can be calculated from:

hy, =Ny /qc (15)

The stop rate predicted by Eqn. (15) does not correct for partial
stops (slowdowns at the back of the queue) or multiple stops (move-ups
in the queue before clearing the intersection). Akgelik (1981, 1990b)
approximates these effects by using only 90% of the stop rate predicted
by Eqn. (15).

The Simulation Model

A cycle-by-cycle, macroscopic simulation model was developed
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with flows represented in terms of vehicle streams each containing a
finite number of vehicles traveling at a constant average headway. At
the upstream intersection, the average demand flow rate is used to
generate arrivals according to the Poisson distribution. In each cycle,
asingle stream with an average headway equivalent to the inverse of the
simulated arrival flow rate in the cycle is generated.

During the effective upstream green, vehicles waiting in queue
depart at the saturation flow rate; subsequent vehicles in the cycle
depart at the arrival headway. If a cycle is oversaturated, overflow
vehicles are released in subsequent cycles.

Signal system parameters are represented by the system cycle
length, effective green splits at each intersection and an offset relation-
ship. When the upstream intersection is close to saturation, the
departing streams become nearly identical in each cycle, and, therefore,
the variance of the distribution of the departure flows from the upstream
signal is much less than that of the arrival flows.

The general concept of the simulation model is illustrated in
Fig. 2. The structure of the model allows for the estimation of all delay
and queueing parameters for two arrival types: random (Poisson)
arrivals at the upstream approach and platooned arrivals downstream.
The degree of platooning, 1s, of course, governed by the prevailing flow
rates and signal settings at the upstream approach.

The simulation provides an option to generate regular arrivals
(equivalent to the non-random term of the analytical model). This
feature was used to estimate the overflow queues and delays as the
difference between cases of Poisson and regular arrivals (see Eqn. 1).

The two delay components (non-random and overflow) predicted
by the simulation model under a variety of operating conditions were
compared with well-established delay models. In all runs, the system
cycle length was fixed at 90 seconds, and the saturation flow rate at 1800
veh/h/lane for both intersections. A range of degrees of saturation (x)
from 0.40 to 0.93 was examined at cycle capacities (sg) ranging from
41040 vehicles. The analysis period was varied to simulate steady-state
queueing conditions. At high x and low sg values, a longer simulation
period was used to emulate the long-term delays and queue statistics
(Olszewski 1990b). At low x values, steady-state conditions were
attained in a relatively small number of cycles. Overall, the simulation
time varied from 15 minutes to 5 hours (or from 10 to 200 cycles). No
simulation warm-up times were used. The effect of the initial transition
period was minimized by setting the demand in the initial signal cycle
to the average demand and by extending the simulation period for high
degrees of saturation.

A scatter diagram of the average overflow delay from simulation
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and Webster’s second term for random arrivals at an isolated intersec-
tion approach (Eqn. 10) against x values is depicted in Fig. 3 (for
different cycle capacities, sg). Eqn. (10) tends to overpredict delays
compared to the simulation results (because the degree of saturation
alone is not a sufficient predictor of the overflow delay). This observa-
tion confirms the findings of other theoretical and simulation studies
(Miller 1968, Cronje 1983, Newell 1989, Olszewski 1990b, Brilon and
Wu 1990).

In the case of platooned arrivals, the simulation experiments were
limited to cases where the upstream signal capacity is larger than the
downstream capacity. Otherwise, overflow queues at the downstream
approach would never develop since the upstream approach cannot
discharge flows exceeding its own capacity.

By simulating a number of progression scenarios, it was confirmed
that the overflow queues are insensitive to the offset relationship
between the intersections (details are given in Rouphail and Akgelik
1991).
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Figure 3. Simulated Overflow Delays and Predictions from

Webster's Second Delay Term (Eqn. 10) as a Function of the

Degree of Saturation for Random Arrivals and For Different
Cycle Capacities.

Calibration Results
Random Arrivals

A new model was calibrated from simulation data to describe the
overflow queueing pattern at an isolated intersection approach. Two
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delay parameters k and xg are used to define the steady-state overflow
delay model (Eqn. 8), which can then be used in the time-dependent
model (Eqn. 7). The ratio of variance-to-mean of arrivals per cycle at
the upstream approach (I,) derived from simulation is entered as a
predictor parameter into the k parameter in a similar manner as in the
Hutchinson’s model (1972). For this purpose, we define k = k' I, (for
strictly Poisson arrivals, I, = 1 and k = k').

The resulting model for lane-by-lane application of the delay
model for isolated signals has a fixed value of x, and a variable k
parameter given by

XO =0.5
k=Kk'I,= 1221, (sg) 02 (16)

This equation gives k values in the range 1.0 to 0.5 for sg values in the
range 3 to 60 vehicles per cycle.

After some initial analysis, the value of xg (degree of saturation
below which the overflow delay is effectively zero) was fixed at 0.50,
and the value of k was calibrated through a series of runs aimed at
maximizing the statistical fit of the steady-state delay model estimates
(Eqn. 8) with simulation results. The calibrated xg value is consistent
with Miller’s early model (1963), and confirmed empirically by Sosin
(1980).

It is emphasized that the dependence of overflow delay on cycle
capacity (sg), as expressed by Eqn. (16) confirms the findings of
previous theoretical work (Miller 1968, Cronje 1983) and recent simu-
lation work by Olszewski (1990b) and Brilon and Wu (1990). Note that
the US HCM (Transportation Research Board, 1985), the UK (Webster
1958; Burrow 1989) and the Canadian (Teply 1984) methods do not
account for the effect of cycle capacity parameter.

Overflow delays and queues predicted by the calibrated steady-
state model and simulation were highly correlated (R2 values of 0.955
for delays and 0.922 for queues) with no apparent bias.

Platooned Arrivals

The general model as described by Eqn. (8) was used for platooned
arrivals at the downstream intersection of a paired intersection system
with due consideration to the conditions at the upstream intersection.
Thus, the delay parameters k and xq are used to reflect not only the
downstream cycle capacity, but also the magnitude of platooning and
cycle to cycle variations in the arriving stream. This approach also
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ensures continuity between platooned and random arrival models.

For a random queue to develop at a downstream traffic signal, the
capacity of an upstream signal must exceed the capacity of the down-
stream signal (assuming no flow gains or losses between the two
signals). In the case of a single traffic stream through the system, this
condition can be stated as:

Xg> X, (17)

where x ; and X, are the downstream and upstream degrees of saturation,
respectively.

The delay parameters can be related to a single platooning index,
namely, the proportion of upstream departures occurring in platoons,
PIP. This index is equivalent to the proportion of vehicles stopped at
an isolated (upstream) intersection, and is given by:

l-g,/¢c

PIP = ———————
1-gyx,/c

forx,<1.0
(18)
1.0 for x,>1.0

Hence, when the upstream approach is oversaturated, the departure
distribution consists of identical platoons whose size is governed by the
length of the upstream green, g, and the saturation flow rate, sy. In such
cases, the flow variance-to-mean ratio of upstream departures (down-
stream arrivals) is zero (Ig=0). Thus, fora single stream, it can be stated
that the downstream random delays and queues approach zero as the
upstream traffic conditions approach saturation. Generally, down-
stream variations in demand will be smaller than those encountered at
the upstream (isolated) approach since variations in the demand flow
are partially absorbed at the upstream approach (Van As 1991).

From Eqn. (16), the second delay parameter k can be defined as
k =k'I4 where I4 now refers to the variance-to-mean ratio of arrivals at
the downstream approach.

Simulation results depicting the ratio of Ij to I, against PIP are
shown in Fig. 4. AtPIP values up to0.75 - 0.85, the ratio I3/ I is close
to unity. With heavier upstream platooning (i.e. higher x,, ), this ratio
decreases rapidly, approaching zero as PIP approaches 1.0. The data
show considerable scatter in the range 0.75 < PIP £0.95. This reflects
a transition region in which the sequence of arrivals from one cycle to
the next influences the frequency of overflow queues. In light traffic
(low PIP), this sequence has no bearing on the mean and variance of
vehicles discharged. In very heavy traffic (high PIP) with frequent
overflow queues, discharge is virtually independent of demand, and
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close to capacity, yielding I4 close to zero. The transition zone between
the two, however, is very susceptible to arrival flow variations.

The following simple model is adequate for predicting the vari-
ance-to-mean ratio of arrivals at the downstream signal for most
practical applications:

I,=1 for PIP<0.85
d u

(19)
6.671,(1 —PIP) for PIP>0.85

Predictions from Eqn. (19) are shown in Fig. 4. The model satisfies the
boundary values for [; =0 at PIP = 1.0.

1 T R S— U
u r [} -
w  simulated —— predicted
0.81
> 0.6
0.4
0.2
0 T T T — -
0.4 0.6 0.8 1

Proportion of vehicles in platoon (PIP)

Figure 4. Effect of the Proportion of Vehicles in Platoon (PIP) on
the Simulated and Predicted 15/ [ ratio (I, I;: Variance-to-Mean
Ratios of Upstream and Downstream Arrivals).

A lower bound on the value of x is necessary depending on the
value of the upstream degree of saturation. No random queues will
occur downstream if the downstream capacity is greater than the
upstream capacity (see Eqn. 17). As a result, the final xo estimate is
given by:

X =max [0.5, min (1, x,)] (20)
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Parameter k” for platooned arrivals was derived by adjusting the
isolated intersection parameter k” (Eqn. 16) to allow for platooned
arrival effects using the PIP parameter. The resulting model is ex-
pressed by the following equations:

K'=(122-0527PIP)(sg) ~  forxy=0.50
(21)
0.302 (. 022
PP (sg) for xy>0.50

The model requires an upper bound on k” at very high x4 ratios (1.3
and above) to ensure that the estimates of overflow delays for random
and platooned arrivals converge to the deterministic oversaturation
delay value. This upper bound can be expressed as:

.. 080K (R)

T 1,13 - xo) 22)

where k’(R) is the corresponding delay parameter for random arrivals
given by Eqn. (16).

Restating Eqn. (8) for platooned arrivals as observed at the down-
stream approach of a paired intersection system gives:

_Kly (x4 —Xo)

T Q=g @

where 14, Xg and k” are determined from Eqns. (19) to (22), respectively,
and other variables are as defined earlier.

Model estimates of overflow delay are plotted against simulation
data in Fig. 5. The model predictions exhibit no apparent bias, and
provide a good statistical fit to the simulated delays (R? = 0.866).
Similar results were obtained for the overflow queue estimates from
Eqn. (14) (R2 = 0.770).

A sample comparison of the overflow delay estimates for isolated
intersection and platooned arrivals are depicted in Fig. 6. It is evident
in this case that the overflow delay component is lower than the isolated
intersection case throughout, although the differences are small up to an
x value of about 0.80. Asexpected, delay estimates from the two models
converge to the deterministic oversaturation delay model at high x
values (equivalent to k = 0, xg = 1.0 in Eqn. 7).
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Figure 6. Overflow Delays Predicted for Uniform and Platooned
Arrivals as a Function of the Degree of Saturation (Time-Dependent

Form).
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Model Extensions

The overflow delay mode! for platooned arrivals described in the
previous section applies strictly for a single traffic stream. The exten-
sion of the model to multistream, multiphase applications requires the
modification of expressions for delay parameters xg, I4, and k'.

Consider that M traffic streams (1, 2, ... m, ... M) enter the
downstream approach, each servicing a demand flow rate qp,. Assum-
ing no losses or gains between intersections, the number of vehicles per
cycle arriving at the downstream signal is expressed as the sum of all
entering streams:

qdc = 2 min (qu, Smgm) (24)

This equation reflects the fact that the individual stream discharge
rate per cycle cannot exceed the stream capacity (i.e. only smgm vehicles
can enter the downstream link when q¢ < S;gm).

Random delays at the downstream approach will not occur so long
as the downstream capacity exceeds the sum of the capacities of all
entering streams:

484 2 2 S Em (25)

This condition can be expressed in terms of a lower bound on the
downstream degree of saturation (xq = q4c/Sdgd):

_ XZmin (q,C, SmEm)

X =
0 2 SmEm

(26)

In low demand conditions, a boundary value for xg = 0.50 is used,
as in the isolated intersection case. Thus, a general expression of x( for
the multistream case is:

Y min (quC, Sp8m)

2 Sm8m

Xo = max|0.50, 7

Note that for a single stream case (m = 1), Eqn. (27) reverts to the
special case described by Eqn. (20).

Furthermore, Eqn. (25) defines an upper bound on the downstream
degree of saturation:

Xs.8
Xd,max = Sdrgdm (28)
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For the multistream case, an approximate value of parameterk' can
be calculated using a flow-weighted average PIP in Eqn. (21):

_2q,PIP

PIP = 29
Zqp @

The variance-to-mean ratio for each upstream flow (Iyy,) can be
calculated from Eqn. (19), and then a flow-weighted average can be
calculated for use in Eqn. (23):

L= )Y qudm

17 "Sq, (30)

Summary and Conclusions

The traditional two-term analytical model for predicting delays,
queues and stops at isolated signalized intersections (random arrivals)
is extended to the case of platooned arrivals. The work was carried out
in the context of modelling traffic performance at signalized paired
intersections. The key findings of the study are:

(1)  The characteristics of arrival patterns at signalized in-
tersections have a profound influence on traffic perfor-
mance. The effects of degree of traffic platooning, cycle
by cycle demand fluctuations and the average flow rate
must all be incorporated in the analysis if meaningful
traffic performance predictions are to be derived.

(i)  Itis generally inadvisable to apply delay or queue length
models derived for random arrivals to platooned arrival
conditions. The study resuits indicate that both the non-
random and random components of delays and queues
are strongly related to the arrival type.

(iii)  Overflow delays and queues are highly dependent on
the prevailing congestion levels. For a paired intersec-
tion system, highly saturated upstream conditions mean
that traffic is released in platoon pulses at a virtually
uniform rate each cycle. Fluctuations in demand are
therefore absorbed at the entry point (or periphery of the
arterial). In this case, the application of the random
arrivals model to platooned arrivals may grossly over-
estimate queue lengths and delays.
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Possible extensions of the model to multistream, multiphase con-
ditions have been discussed. The following areas are recommended for
further study:

(a)  Laneflowestimation: The effects of lane underutilization
and short lanes are important issues. A lane-by-lane
analysis method, such as the one adopted by SIDRA
(Akgelik 1990b, Akcelik and Besley 1991), is a prereq-
uisite for analyzing this type of effects.

(b)  The case of two green periods (opposed and unopposed
turn periods) at the upstream and downstream approaches
needs to be considered in modelling platooned arrivals.
Formulae for the case of two green periods have been
used in SIDRA for isolated intersection cases.

(c)  Modelling of the effect of platooned arrivals on opposed
turn capacities would be a useful improvement.

(d) There is also a need for developing overflow delay
models for vehicle-actuated and semi-actuated signal
operations.
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Notation

¢ Signal cycle time (common for the upstream and down-
stream intersections)
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dy> 94

Su, Sd

Sg

Xw X4

)

I, Iy

k, k’

PIP
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Effective green times at upstream and downstream
approaches

Average demand (arrival) flow rates at the upstream and
downstream approaches

Saturation flow rates at the upstream and downstream
approaches

Cycle capacity (vehicles per cycle)

Capacity, Q = sg/c (vehicles per hour or vehicles per
second)

Degrees of saturation (demand/capacity ratio, g/Q) at
the upstream and downstream approaches

Degree of saturation below which the overflow delay is
Zero

Variance-to-mean ratios of the number of arrivals per
cycle at the upstream and downstream approaches

Delay parameters related to the rate of increase of delay
(k= kD).

Duration of the demand (arrival) flow period

Proportion in platoon: proportion of vehicles departing
from the upstream intersection (arriving at the down-
stream intersection) which are in a platoon; equivalent
to the proportion of vehicles departing with saturation
headways

Average delay per vehicle, d =d; +d, where d; and d,
are the non-random and overflow components of aver-
age delay

Maximum back of queue in an average signal cycle, N
=Npq +Npyp where Ny and N, are the non-random
and overflow components of the maximum back of
queue (N, = Ny is the average overflow queue)
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h  Stop rate (average number of stops per vehicle), h = h;
+ h, where h; and h, are the non-random and overflow
components of stop rate

Units:  Arrival flow and capacity in veh/h or veh/s, average
delay in seconds, queue length in vehicles.
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