Lane-Based Micro-Analytical Model of a Roundabout Corridor

Rahmi Akçelik

CITE 2013 Annual Meeting
Calgary, Alberta, Canada
April 2013
1. Analytical Network Models
2. Lane-Based Network Modeling
3. SIDRA INTERSECTION 6 Network Model
4. An Example: Staggered T Roundabouts
5. SIDRA INTERSECTION 6 Background
Shift of interest from signal coordination to congestion modeling in high traffic demand conditions experienced in more recent times.

Interest in all types of intersection (Signals, Roundabouts, Sign Control).

Same intersection types (e.g. roundabout corridor) or mixed types of intersection are of interest.
Basic Elements of NETWORK Model in SIDRA INTERSECTION 6

- **Backward spread of congestion**: capacity reduction at upstream lanes blocked by downstream lane queues.

- **Capacity constraint**: oversaturated upstream lanes reduce arrival flows for downstream movements.

- **Lane Movements**: blockage of upstream lanes depends on lane choices of movements from approach lanes to exit lanes.

- **Upstream and downstream lane flows** and mid-block lane changes on an approach to determine platooning.

- **At signals, forward movement of vehicle platoons departing from signals** is another important element of network modeling.
The two basic elements of the model are highly interactive with opposing effects.

SIDRA INTERSECTION 6 uses a network-wide iterative process to find a solution that balances these opposing effects.

Backward spread of congestion and capacity constraint are common to all intersection types.

This paper focuses on roundabouts.
Traditional analytical network models have been link-based models. Links represent lane groups in which traffic conditions of individual lanes are aggregated to some assumed average (balanced) condition.

An approach-based model is a more extreme case of this as it applies aggregation to all approach lanes.

Such link-based or approach-based models cannot identify backward spread of congestion since average lane queue estimates are not sufficient.

Poor modeling of lane queues leads to a poor network model.

Lane capacities, lane flows and lane queues for downstream and upstream approaches may be highly interdependent in cases of closely spaced intersections, and therefore, a LANE-BASED method is essential for reliable modeling of network performance.
Level of Analysis Detail

<table>
<thead>
<tr>
<th></th>
<th>Individual vehicles</th>
<th>Drive cycles (Vehicle paths)</th>
<th>Traffic flows</th>
<th>Speed-flow functions</th>
<th>Microsimulation models</th>
</tr>
</thead>
<tbody>
<tr>
<td>More detailed model</td>
<td></td>
<td></td>
<td>TRL (UK) Roundabout Model</td>
<td>Strategic transport planning models</td>
<td>SIDRA INTERSECTION 6</td>
</tr>
<tr>
<td>of TRAFFIC STREAM</td>
<td></td>
<td></td>
<td>HCM (US) (Signals, Signs) TRANSYT</td>
<td>Lane Groups / LINKS</td>
<td>HCM (US) (Roundabouts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More detailed model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of ROAD GEOMETRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Reference:
Importance of Lane-Based Modeling

- **Unequal lane flows** (many reasons)
- De facto exclusive lanes
- Approach and exit **short lanes** (lane use effects)
- **Slip / Bypass lanes** (Give-way / Yield and Continuous)
- **Roundabouts:**
 - Circulating lane use
 - Dominant and subdominant lanes

Individual lanes have different characteristics
Need for Lane-Based Model

- **Lane Movements**: Upstream lanes are affected by downstream (exit) lane queues according to the destinations of movements.

- **Saturation levels (v/c ratios)**, therefore queue blockage probabilities differ significantly for individual lanes.

- **Lane under-utilization** exists due to many reasons including differences in the number of lanes available on upstream and downstream approaches.

- **Balance of upstream and downstream lane flow rates** is also an important consideration due to lane change implications within a short distance.
Importance of Back of Queue Model for Networks

Back of Queue vs Cycle-Average Queue

ROUNDABOUTS and SIGN CONTROL

Opposing (Major) stream vehicles

Queue at start of gap

Cycle-average queue

Give-way (yield) line

Queue move-ups

Overflow queue

Delay

Queue

Entry (Minor) stream vehicles

Back of queue

Headway > Critical gap

Unique gap-acceptance based BACK OF QUEUE Model for Roundabouts and Sign Control in SIDRA INTERSECTION
A Lane-Based Network Model: SIDRA INTERSECTION 6

Lane-Based Micro-Analytical Network Model for Congestion Modelling ...

Extends its traditional lane-based single intersection model to network modeling.

SIDRA INTERSECTION 6 introduces the biggest changes in the 30-year history of the software.

Major data structure and user interface changes have been implemented as a result.
Example: Staggered T Roundabouts

Two T-shaped roundabouts placed with 50 m distance between them to demonstrate the lane-based network model.
Example

- **Analysis (i) – “Default Lane Flows”**
 It is assumed that only Turning Volumes are known at each intersection. Default settings are used.

- **Analysis (ii) – “Balanced Lane Flows”**
 It is assumed that the Network Origin - Destination flows are known in addition to the intersection turning volumes.

Results from the two analyses are compared.
In Analysis (ii) with extra calibration effort, upstream and downstream lane flows match reasonably well.

Calibration of lane flows is possible in SIDRA INTERSECTION 6 as a lane based model. Input parameters used:
- Set As Dominant Lane
- Lane Utilisation Ratio
- Lane Movement Proportions

Analysis (i)

Upstream and downstream lane flows do NOT match well.

Analysis (ii)

Upstream and downstream lane flows match well.

<table>
<thead>
<tr>
<th>Lane 1</th>
<th>Lane 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>570</td>
<td>459</td>
</tr>
<tr>
<td>575</td>
<td>444</td>
</tr>
<tr>
<td>613</td>
<td>427</td>
</tr>
<tr>
<td>440</td>
<td>595</td>
</tr>
</tbody>
</table>
The example also demonstrates that there are other factors contributing to the interactive nature of the system. For example:

- **Decreases in downstream arrival flow** change the circulating flow rates and the balance of circulating lane flows at the downstream roundabout. As a result, roundabout entry lane capacities change.

- **Changes in Lane Movement Flow Proportions** (specified as input) change lane blockage effects at the upstream intersection. As a result, capacity reductions at the upstream lanes will change.
Example

The results for this example indicate that analysis based on default lane flows may be adequate for large-scale network analyses.

However, further investigation is recommended to establish appropriate levels of model accuracy depending on the context and purpose of analysis.
SIDRA INTERSECTION Background

SIDRA INTERSECTION 6.0
PLUS VERSION
NETWORK VERSION

First released in 1984

SIDRA INTERSECTION 6
(including NETWORK Model)

Over 9600 licences in more than 1400 organisations across in 75 Countries

<table>
<thead>
<tr>
<th>Region</th>
<th>Licences</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>321</td>
</tr>
<tr>
<td>Australia</td>
<td>495</td>
</tr>
<tr>
<td>South Africa</td>
<td>93</td>
</tr>
<tr>
<td>Canada</td>
<td>82</td>
</tr>
<tr>
<td>New Zealand</td>
<td>54</td>
</tr>
</tbody>
</table>
SIDRA INTERSECTION Background

STRONG RESEARCH BASE:
Empirical and theoretical methods combined ...

20 years at Australian Road Research Board
13 years at Akcelik & Associates
SIDRA INTERSECTION 6
Other Major New Features

- **Movement Classes**: light and heavy vehicles, buses, bicycles, large trucks, trams and two user classes with ability for special treatment.

- **Origin-Destination Movements** as a basis of all data and modelling.
SIDRA INTERSECTION 6

Bus Priority Lane and Phase

Bicycle lanes
SIDRA INTERSECTION 6

SIGNS

- Variable phase sequence analysis
- Easier phase sequence data specification

Diamond Overlap Variable Phase Sequence

Sequences generated:

- A - B1 - C - D - E1 - F
- A - B1 - C - D - E2 - F
- A - B1 - C - D - F
- A - B2 - C - D - E1 - F
- A - B2 - C - D - E2 - F
- A - B2 - C - D - F
- A - C - D - E1 - F
- A - C - D - E2 - F
- A - C - D - F
Model Benefits / Objectives

- Understanding
- Problem solving
Thank you!

Rahmi Akçelik
www.sidrasolutions.com