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A Novel Methodology to Assimilate Sub-Path
Flows in Bi-Level OD Matrix

Estimation Process
Krishna N. S. Behara, Ashish Bhaskar , and Edward Chung

Abstract— Traditional bi-level origin-destination (OD) matrix
estimation process adjusts the matrix (at the upper level) based
on the deviation between the observed and simulated traffic
counts. The problem is mathematically under-determined, and
the quality of the solution can be enhanced by restricting the
upper level search space with information from other sources.
This paper presents a methodology that assimilates sub-path
flows in the upper level objective function. The contributions
of the study are two-fold: first, it proposes the idea of “struc-
tural comparison of sub-path flows” to relax the requirement
of “known” penetration rate of vehicles’ trajectories; second,
it proposes an innovative upper level formulation where the
structural difference between the observed and assigned sub-path
flows is integrated with the traditional deviations between the
observed and assigned link flows. The sub-path flows can be
estimated from advanced data sources such as Bluetooth MAC
scanner. The proposed methodology is tested using simulation on
a realistic network from Brisbane, Australia and results indicate
its practical relevance for situations when the penetration rate
of Bluetooth trajectories is generally unknown. The proposed
method has a better ability to maintain structural consistency and
showed considerable improvements in the quality of OD estimates
as compared to the traditional traffic counts-based approach.

Index Terms— OD matrix estimation, bi-level optimization,
Bluetooth, sub-path flows, gradient descent, OD structure,
Brisbane.

I. INTRODUCTION

ORIGIN - DESTINATION (OD) matrix is a tabular rep-
resentation of travel demand (flows) from each origin

to every other destination on the transport network. It is a
vital input for different levels of transport modelling- ranging
from traditional strategic planning of transport infrastructure
to advanced real-time operations and control of the network.

Ground truth of OD flows for large scale road network
can’t be directly measured and is generally unknown. Tra-
ditionally, road network is equipped with loop detectors and
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Fig. 1. Traffic counts-based bi-level OD estimation.

OD estimation process is modelled as a bi-level optimization
problem [1], [2] where (see Fig.1): a) at upper level, the OD
matrix (x) is adjusted by minimising the gap between the
observed (ỹ) and estimated (y) traffic counts; and b) at lower
level, traffic counts are estimated (simulated) by assigning
traffic on the network using the adjusted OD matrix.

In Fig.1, the upper level formulation, is generally expressed
in terms of observed (ỹ) and estimated (y) link flows
and assumes one of the following forms: Information min-
imization/entropy maximization [3]; maximum likelihood
approach [4]; Bayesian inference methods [5], and generalized
least squares (GLS) [1]. Equation 1 is the popular Spiess [6]’s
upper-level formulation using matrix algebra.

min
x

Z (x) = min
x

1

2

(
((y−ỹ))T (y−ỹ)

)
(1)

subject to: y = Px (1a)

The lower level of the bi-level framework runs traffic
assignment (P) that is either analytically derived [7] or
simulation-based (say, from Aimsun [8], DYNASMART-P [9],
TRANSIMS [10] etc.) or a combination of simulation and
analytical formulation [11] or directly based on observations
of travel speed/time [12] or turning proportions [13]. Alter-
natively, machine learning techniques have been explored
to learn dynamic mapping (between OD and link flows)
from observations of traffic data, thus independent of tradi-
tional assignment [14], [15]. They seem to be computational
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efficient for demand estimation and prediction especially in
real time. However, they cannot provide physical meanings of
the assignment process as done by the existing analytical and
simulation-based models [14].

Various techniques have been proposed to solve the upper-
level formulation of the bi-level problem. They include
gradient-based [6], gradient approximations [16]; and evo-
lutionary algorithms (such as genetic algorithms, see [17]).
Among these, gradient-based techniques are quite popular and
different forms of the gradient-based techniques are applied
in literature. This includes but not limited to coordinate
descent method [18], projected gradient method [19], and the
stochastic gradient method [20].

While most studies focused on different solution algorithms,
OD estimation using traffic counts is still an under-determined
problem. This is because a number of combinations of OD
flows (or OD matrices of different structures) could exist to
reproduce the same set of link flows, and thus the quality OD
estimates cannot not be guaranteed if the objective function
focusses only on the deviation of traffic counts [21]. This
demands the need to maintain consistency in the structure
of OD matrix (as per [22], [23] the trip distribution pattern
between different OD pairs within an OD matrix defines
the OD structure) during every iteration of bi-level estima-
tion process [24]. To preserve the OD structure, most stud-
ies [1], [19], [25], [26] proposed to use target trip matrix (x̃)
in the objective function in order to confine the feasible region
of OD estimates (refer Equation 2). The weight factors for
objectives based on traffic counts and target OD matrix in
Equation 2 are denoted by βy and βx, respectively.

min
x

Z (x)=min
x

1

2

((
βy (y−ỹ)

)T
(y−ỹ)+βx ((x−x̃))T (x−x̃)

)
(2)

subject to: y = Px (2a)

Researchers have also proposed constraints outside the
objective function to maintain structural consistency. For
instance, [24] proposed constraints on the columns of OD
matrix using additional information from parking surveys,
and [17] proposed constraints on the rows of OD matrix
using the ratio of OD flows to origin flows. However, the
prior knowledge (either in the form of target OD or trip
production/attraction constraints) is based on outdated travel
surveys and can lead to biased estimates [1].

With the availability of big traffic data, several researchers
proposed to use travel speeds [27], travel times [28], turning
proportions [29] and trajectory/partial path flow data [30], [31]
into OD estimation problem. While some tried to infer OD
matrices directly from the trajectory data such as taxi trajec-
tories [15], [32], [33] or cellular probe [34];others tried to
address the OD under-determinacy problem by introducing this
information directly into the formulation where the deviations
of observed and estimated path flows were minimized. Here,
the penetration rate of observed path flows was either assumed
to be known [30], [31], [35] or estimated [36], [37]. For
instance, [31] assumed that penetration rates of Bluetooth
counts is same as that of Bluetooth trajectories and used it
to scale-up the vehicle trajectories in the objective function;

[37] used simulator-based approach to estimate the scaling
factor of trajectories that are inferred from call detail records.
Thus, no technique has been proposed until now to use flows
inferred from vehicle trajectories (we refer them as sub-
path flows and are defined in the next paragraph) into the
OD estimation formulation without prior knowledge of their
penetration rates.

The following definitions regarding the sub-paths and sub-
path flows are made in this study:

1. Sub-path (b): is defined as the portion of a complete
traversed path. For instance, sub-path inferred by Blue-
tooth sensors is represented as a sequence of Bluetooth
MAC scanner (BMS) detections.

2. Sub-path flows (sb): are the flows passing through
the sub-path (b). The vector representing sub-path
flows from different sub-paths is represented using s̃.
For instance, the Bluetooth trajectories count over the
sub-path can be used as the sub-path flows (refer 38]
about method to estimate Bluetooth trajectories over the
network).

3. Structure of sub-path flows: is defined as the arrange-
ment of the sub-path flow values within the vector s̃.
More details about it are presented in Section III
(Method of comparison).

A sub-path can also be considered as a sequence of links.
If it constitutes only two detections at the extreme ends of a
road segment, then sub-path flows refer to link flows. If the
vehicle’s trip is continuously monitored (as in GPS) from its
origin until its destination, then sub-path represents a complete
path. However, misdetections at a few sensor locations (as
in case with Bluetooth scanners) could result in many such
sub-paths for the same trip. Using flows from those sub-paths
can lead to redundancy in the information as they relate to
the same original trip. Thus, right selection of un-correlated
sub-path flows is crucial in the OD estimation problem.
However, sub-path flows capture trip distribution better than
the point-based link flows, and any additional trip distribution
information in the objective function tends to improve the
quality of OD estimate.

The contributions of this study are two-fold. First, it pro-
poses the idea of “structural comparison of sub-path flows” to
relax the requirement of “known” penetration rate of vehicles’
trajectories. To our knowledge, no study in the past has
proposed such a method to deal with unknown penetration
rates. Second, it develops a new upper level formulation by
using the structure of sub-path flows as a penalty/scaling
factor for the traditional traffic counts-based OD estimation.
The formulation is novel and has not been considered in the
literature.

The proposed approach is generic and as the proof of
the concept, a synthetic network of Bluetooth-based sub-path
flow information, and a gradient descent algorithm for OD
estimation are considered in this paper. The methodology
is thoroughly tested on a simulation model from Brisbane,
Australia.

The remainder of the paper is structured as follows:
Section II describes the notations of terms used in this study;
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Section III discusses the proposed methodology; Section IV
focusses on the experiments and results; Section V discusses
the results of experiments; and finally the study concludes in
Section VI with future study recommendations.

II. NOTATIONS OF THE TERMS

In order to describe the formulations relevant to this paper,
the following mathematical notations are used.

• The cardinality of a set is represented using |. |
• A denotes set of selected links of the study network;

ỹa and ya represent observed (say, from loop detectors)
and simulated traffic counts/link flows on link a ∈ A.
ỹ ∈ R

|A|
≥0 and y ∈ R

|A|
≥0 denote vectors of observed and

simulated link flows, respectively
• H represents set of complete vehicle trajectories in a

study network. B denotes set of sub-paths and L represent
the total set of actual sub-trajectories (say, as sequence
of BMS IDs) along |B| sub-paths. If the study performs
analysis on only a random sample of sub-trajectories (L̃),
then we define η =

∣∣∣L̃∣∣∣/ |L|. Here, ηb is used to repre-
sent the penetration rate of observed vehicle trajectories

on sub-path b. η ∈ R
|B|
≥0 is vector representing market

penetration rates of observed trips on |B| sub-paths
• D denotes days of similar travel patterns. s∗

b , s̃b,d , s̃b

and sb represent actual, observed (say, from Bluetooth)
on dth day (d ∈ N

|D|), consolidated observations over
|D| days, and simulated sub-path flows on a sub-path

b ∈ B , respectively. s∗ ∈ R
|B|
≥0 , s̃d ∈ R

|B|
≥0 , s̃ ∈ R

|B|
≥0 and

s ∈ R
|B|
≥0 denote vectors of actual, observed (on dth day),

observed (consolidated over |D| days), and simulated

sub-path flows, respectively. μs∗ ∈ R
|B|
≥0 is a vector with

each cell value equal to mean of flow values in s∗, and

similarly μs̃ ∈ R
|B|
≥0 , μs ∈ R

|B|
≥0 correspond to s̃ and s,

respectively
• W denotes set of OD pairs in the study network. xw repre-

sents the number of estimated non-negative trips (by car)
for OD pair w ∈ W , and similarly x̃w and x∗

w are for prior
and true OD flows. x ∈ R|W |

≥0 , x̃ ∈ R|W |
≥0 , and x∗ ∈ R|W |

≥0
denote estimated, prior, and true OD vectors, respectively.
μx ∈ R|W |

≥0 is a vector with each cell value equal to mean

of x. Similarly, μx̃ ∈ R|W |
≥0 and μx∗ ∈ R|W |

≥0 correspond
to x̃ and x∗, respectively.

• pa
w is proportion of trips between wth OD pair passing

through link a. P ∈ R
|A|×|W |
≥0 represents the link propor-

tion matrix with pa
w being the cell values.

• qb
w is proportion of trips between wth OD pair passing

through sub-path b. Q ∈ R
|B|×|W |
≥0 represents the sub-path

proportion matrix with qb
w being the cell values.

III. PROPOSED METHODOLOGY

The original objective function of OD estimation is based on
the deviations of traffic counts (link flows). We know that link
counts are only point-based measurements and are not meant
to represent trip distribution very well. Matching both link
flows and trip distribution (as two different objectives) could

mitigate the OD under-determinacy problem to some extent.
Direct observations of path flows help to account for the trip
distribution. However, in situations where complete path flows
cannot be observed, partial observations of path flows (we term
them as sub-path flows in this paper) could possibly serve
the purpose better than using only link flows. Thus, matching
sub-path flows in addition to the link flows in the upper-level
formulation should take care of both the objectives. However,
in most cases, the market penetration rates of sub-path flows
are generally unknown, and in such situations, we need an
alternative measure of comparing sub-path flows. This is where
the paper contributes by suggesting

a) A method of comparison: between observed (sample)
and simulated sub-path flows.

b) A way to integrate: the above method of comparison into
the existing upper level formulation of OD estimation
problem.

Method of comparison: The method proposed to com-
pare sub-path flows is through the concept of “structure”.
We assume that the structure of observed sample sub-path
flows (s̃) can be used as a proxy for the structure of actual
sub-path flows (s∗). Thus, expressing in terms of structural
comparison between s̃ (i.e. sample) and s should be equivalent
to the structural comparison between “actual” sub-path flows
and s. We have used Pearson correlation coefficient (ρ) for
the structural comparison of sub-path flows in our study.
A higher correlation implies that both vectors (i.e.s̃ands) are
structurally closer to each other. This concept is borrowed
from bio-medical analytics discipline where models with high
dimensional data points are updated using similarity measures
such as correlation coefficient [39].

Way to integrate: The structural comparison of sub-paths
flows needs to be integrated into the upper-level formulation.
One way is to consider as a weighted sum of two different
objectives. However, we have noticed in our experiments that
the deviation of traffic counts is dominating the objective
function and there is no improvement in the OD structure
despite giving high weightage to the structural comparison
of sub-path flows. Therefore, we propose to model the sub
path deviations (second objective) as a penalty/scaling factor
to the traffic counts deviation (first objective). To achieve this,
the formulation should be designed as a product of the two
objectives.

The proposed methodology is illustrated in Fig.2. The new
upper level formulation (Z (x)) includes two objectives: one
based on traffic counts (ỹ and y) and other based on sub-path
flows (s̃ and s).

Details into the development of the objective function for-
mulation, method of gradient-based OD estimation, procedure
to implement the proposed approach, and development of
Bluetooth-based sub-path flows are presented in Section III.A,
Section III.B, Section III.C, and Section III.D, respectively.

A. Proposed Objective Function Formulation

The new upper-level formulation can be expressed in terms
of the deviation between the observed (ỹ) and estimated (y)
link flows and the structural comparison between observed (s̃)
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Fig. 2. Generic OD estimation algorithm based on the proposed approach.

and simulated (s) sub-path flows as shown in Equation 3.

min
x

Z (x) = min
x

1

2

((
c1 + (y−ỹ)T (y−ỹ)

))
(3)(

(c2 + f (s,s̃))T (c2 + f (s,s̃))
)

f (s,s̃) = 1 − ρ (s,s̃)
2

(3a)

such that y = Px; s = Qx (3b)

ρ(s,s̃) = (s̃ − μs̃)
T (s−μs)√

(s̃ − μs̃)
T (s̃ − μs̃)

√
(s−μs)

T (s−μs)

(3c)

The first objective is c1 + (y−ỹ)T (y−ỹ) and the second
objective is c2 + 1−ρ(s,s̃)

2 . Here, c1 and c2 are the stabil-
ity constants. With non-zero c1 (�1) if the deviation of
traffic counts is equal to zero then the objective function
should focus on minimising the second objective. The second
objective considers any structural differences between the
estimated/simulated and observed trip distribution from the
perspective of sub-path flows. This acts as a scaling factor
to the original traffic counts-based objective. The similarity
measure (ρ (s,s̃)) is converted to a dissimilarity measure
( 1−ρ(s,s̃)

2 ) with the addition of a constant “c2”. This implies,
when ρ(s,s̃) = 1, Z (x) is multiplied by a factor of c2

2 and for
ρ(s,s̃) = −1, Z (x) is scaled up (c2+1)2 times.

What should be the value of c2? Ideally, c2 +
(

1−ρ(s,s̃)
2

)
�= 0

a) When structures of s and s̃ are same then ρ(s,s̃) is
equal to 1 and

(
c2 + 1−ρ(s,s̃)

2

)
⇒ c2. Here, the objective

function, Z (x), is multiplied by a factor of c2
2. Therefore,

c2 = 0 should not be considered as it will make the
objective function zero.

b) When structures of s and s̃ are extremely opposite then
ρ(s,s̃) is equal to −1 and

(
c2 + 1−ρ(s,s̃)

2

)
⇒ (c2+1).

Here, the objective function, Z (x) is multiplied by a
factor of (c2+1)2. Therefore, c2 = −1 should not be
considered as it will make the objective function zero.

For the current study we consider c2 = 1. In this case,
a) When the structures of s and s̃ are same then Z (x)

reduces to a traditional link counts deviation; that is,
1
2

(
c1 + (y−ỹ)T (y−ỹ)

)
. This implies that simulated trip

distribution matches the actual trip distribution, and
simply minimizing traffic counts deviations should be
sufficient to estimate OD.

b) When the structures of s and s̃ are extremely oppo-
site, the objective function multiplies (2)2 times and
becomes 2

(
c1 + (y−ỹ)T (y−ỹ)

)
. This implies that devi-

ation between traffic counts are amplified considering
the extreme variations in the sub-path flows.

B. Gradient-Based Method for Optimization of
the Objective Function

The gradient descent optimization method is used to iter-
atively update x. The updating step is based on two major
factors: search direction and step-size (λ):

a) The search direction is determined by the gradient
of Z (x). The step-size (λ) parameter determines the
number of iterations required for the convergence. Lower
values of λ ensure that the path of the gradient is smooth
but computationally expensive. Higher values of λ can
lead to higher values of the objective function, and the
convergence could be affected.

Assuming P and Q are locally constant,1 the functions
involved in Equation 3 are differentiable with respect to x
and its gradient is expressed as shown in Equation 4 and 4a.

∂ Z (x)

∂x

=
∂

(
1
2

(
c1 + (y−ỹ)T (y−ỹ)

)
(c2 + f (s,s̃))T (c2 + f (s,s̃))

)
∂x

(4)

=
(

c1 + (y−ỹ)T (y−ỹ)
)

(c2 + f (s,s̃))
∂ ( f (s,s̃))

∂x
+ (c2 + f (s,s̃))T (c2 + f (s,s̃)) (y−ỹ) PT (4a)

using y = Px
where

∂ ( f (s,s̃))
∂x

= −1

2

∂ (ρ (s,s̃))
∂x

(4b)

Using the mapping relationship (Q) between s and x,
Equation 3c can be simplified as shown in Equation 5.

ρ (Qx,s̃) = (s̃ − μs̃)
T (

Qx−μQx
)

√
(s̃ − μs̃)

T (s̃ − μs̃)

√(
Qx−μQx

)T (
Qx−μQx

)
= �1√

�2
√

�3
(5)

1The OD estimation presented in this paper is only for an hour OD that is
assigned in the simulator using stochastic route choice. Traffic is assigned in
Aimsun through a dynamic scenario and due to which the mapping relation-
ships change dynamically during the hour simulation. However, the matrices
P/Q are estimated using a back-calculation procedure based on one hour
of aggregated link/sub-path flows that are resulted from Aimsun in every
iteration. Thus , P and Q are only locally constant and change every time OD
is updated.
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where

�1 = (s̃ − μs̃)
T (

Qx−μQx
)

(5a)

�2 = (s̃ − μs̃)
T (s̃ − μs̃) (5b)

�3 = (
Qx−μQx

)T (
Qx−μQx

)
(5c)

Now, ∂ρ(Qx,s̃)
∂x can be expressed as shown in Equation 6.

∂ρ (Qx,s̃)
∂x

=
QT

(
(s̃ − μs̃) − �1

�3

(
Qx−μQx

))
√

�2
√

�3
(6)

Thus, the differential objective function provides opportu-
nities to consider standard gradient-based method to update
the OD vector; that is, during any kth iteration xk is updated
to xk+1 using the search direction and optimal step-size as
expressed in the Equation 7. Here, Z (x) and x in ∂ Z(x)

∂x refer
to the values corresponding to kth iteration. e is vector of 1s
and of dimension same as x and Hadamard product “◦” is used
for element wise multiplication between λk and the gradient,
and xk and

(
e − λk ◦ ∂ Z(x)

∂x

)
. Every iteration, the optimum

λk is calculated as the solution to the objective function i.e.
Equation 3.

xk+1xk ◦
(

e − λk ◦ ∂ Z (x)

∂x

)
(7)

λk ◦ ∂ Z (x)

∂x
< 1 (7a)

C. Procedure to Implement the Proposed Methodology

To execute the framework illustrated in Fig. 2 under con-
trolled environment, we need to run upper-level and lower
optimizations one after another in an integrated manner. The
step by step procedure for which is outlined below:

• Step-0: Obtain the observed sub-path flows (s̃) and
observed link flows (ỹ ).

• Step-1: Set k = 1; xk = x̃.
• Step-2: Load the study network in Aimsun next [40] with

demand, xk , and run traffic assignment (either stochastic
route choice (SRC) assignment or dynamic user equilib-
rium). The outputs of the simulation are link flows (yk),
sub-path flows (sk), link-proportion matrix (Pk) and
sub-path proportion-matrix (Qk).

• Step-3: Minimise the objective function, Z(x) with
respect to xk (refer Equation 3).

• Step-4: Check for termination criterion, and if it is not
met, set k: = k+1; update the demand (xk) for the
next iteration (refer Equation 7), and go to Step 2. Else
terminate the optimisation, and value of xk is the final
estimated OD vector.

The termination criterion can be either based on maximum
relative change in the elements of estimated OD flows at
successive iterations [7] or observed convergence for a fixed
number of iterations [8].

For the current analysis, the codes for the optimisation
are written in Matlab, and lower level traffic assignment is
optimised using Aimsun next [40]. We have used the default
parameter values for both demand scenarios and experiments

Fig. 3. Example to demonstrate Bluetooth sub-path.

in Aimsun. A Python script is written to integrate the optimisa-
tion model (in Matlab) with the traffic assignment (in Aimsun).
However, Matlab is the primary platform that writes OD data
into Aimsun OD format, runs the simulation, executes the
Python script, and reads the simulation outputs for further
optimisation process. This integration of Aimsun with Matlab
is similar to the one presented in Antoniou et al. [21].

The aforementioned sections demonstrate that an additional
objective based on sub-path flows can be incorporated into
bi-level formulation. The next section discusses the develop-
ment of sub-path flows from the network of BMS.

D. Bluetooth Sub-Path Flows

We assume that the road network is equipped with
BMS [41]. For instance, in Brisbane, Australia we have over
1200 BMSs monitoring traffic on the Brisbane City Coun-
cil (BCC) region[42]. The data from these network of BMSs
can be integrated to define the trajectories of the Bluetooth
vehicles [38]. The paths inferred from BMS detections are
only sub-paths of actual paths traversed by vehicles. This is
because, a) not all Bluetooth equipped vehicles are detected
at the scanning zone; and b) the entire network is not fully
equipped with the BMS, and the origin/destination BMS for
the Bluetooth vehicle trajectory might not truly correspond to
the true origin/destination zone for the network for which the
OD is estimated.

For ease of understanding, refer to Fig. 3 that illustrates the
difference between complete paths and a sub-path. Let’s say
the vehicle is detected from BMS1 to BMS5. The complete
paths between the OD pairs A-C, A-D, B-C, and B-D share
a common sub-path that can be represented as a sequence i.e.
BMS1-BMS2-BMS3-BMS4-BMS5. Thus, it can be seen that
it is not possible to infer the true trip ends (i.e. A/B and C/D)
from the above sub-path.

Sometimes, a set of sub-paths can belong to the same trip
due to missed detections. For instance, a missed detection at
BMS3 in Fig. 3 could result in two sets of sub-paths, namely
BMS1-BMS2, and BMS4-BMS5. In such cases the trips along
those sub-paths can lead to redundancy in the information as
they relate to the same original trip. Thus, right selection
of un-correlated sub-paths is crucial in the OD estimation
problem.

The penetration rate of Bluetooth-based counts at a specific
level can range from 10%-30% [31]. However, the penetration
rate for the observed path flows from BMS can be much lower
say, around 5% ([43] reported 4.4% average detection rate
for 12 OD pairs at an interchange level) and can vary over
different paths. We address this issue of low sample rates
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Fig. 4. Study site with Bluetooth scanners (solid blue circles), loop detectors
(red rectangles) and zonal centroids (solid green circles).

as follows: We propose to generate a sub-path flow vector
by combining sub-path flows observed from several days of
similar travel patterns. For instance, the observed sub-path
flows from |D| regular working Mondays can be used to
develop a consolidated vector of observed sub-path flows for
a typical working Monday. Thus, s̃b can be considered as a
consolidation of several observations of Bluetooth flows on
sub-path b as shown in Equation 8.

s̃b =
d=|D|∑
d=1

s̃b,d (8)

The consolidated vector s̃ can then be expressed as shown in
Equation 9

s̃ =
d=|D|∑
d=1

s̃d (9)

IV. EXPERIMENTS AND RESULTS

A. Study Network

To test the proposed methodology, the study network should
have the following properties:

1. It should be realistic and representative of the existing
infrastructure;

2. It should have enough route choice options;
3. It should have a combination of at least two different

types of road hierarchy i.e. motorway and arterial;
4. OD pairs should have enough overlap between the paths;
5. It should have enough Bluetooth connectivity; that is,

the sub paths should be along the major routes; and
6. Loop detectors to be located on important corridors.

The study network meeting the above-mentioned criteria is
presented in Fig. 4. It represents the core of the Brisbane
city network imported into Aimsun next from open street
map [44]. The network comprises of 15 centroids (zones),
24 loop detectors (red squares in Fig. 4), and 20 Bluetooth
scanners (blue circles in Fig. 4) and 5 external zones. The loop
detectors and BMS are placed on the major roadways such as
Pacific Motorway, Clem Jones Tunnel, Coronation Drive, Inner
City Bypass, and Kelvin Grove Road.

The OD matrix is designed at a zonal level equivalent
to Statistical Area 2 (SA2) ()[45] and is 15 x 15 in size.
Internal trips are excluded in the analysis. Since, the number
of OD pairs is greater than 200 it is a high dimensional OD
matrix [46]. The 15 zonal centroids shown are:

• West End;
• Gabba;
• Brisbane (BNE) Inner East;
• New Farm;
• Fortitude Valley;
• Spring Hill;
• Central Business District (CBD);
• Newstead;
• Kelvin Grove(KG)–Herston;
• Red Hill–Milton; and
• Five external zonal centroids; that is, Ext-1, Ext-2, Ext-3,

Ext-4, and Ext-5, respectively.

The traffic from each zone is loaded into to the network
through several connectors. The zones, namely Ext-1, Ext-2,
Ext-3, Ext-5 and New Farm have 2 connectors each; Ext-4,
Kelvin Grove, Newstead and BNE Inner East have 3 each;
West End, Red Hill-Milton, Valley, and Gabba have 4 each;
and Brisbane CBD has 5 connectors, respectively. The number
of paths per OD pair are chosen to be greater than one, and
the paths connecting different OD pairs have enough overlap.

Each zone/centroid is connected by at least one BMS so
that complete path can be identified as a sequence of BMS
IDs between any OD pair. Although complete trajectories
are available in the simulation, the analysis in this study is
performed using Bluetooth sub-paths only. Refer Section IV.B
for more details.

B. Design of Experiments

For the current analysis we aim to estimate typical OD
for the network, given data from several days. For instance,
we are interested in typical OD during morning peak hours
of regular Monday using loop detector and BMS data from
several regular Mondays. To generate synthetic data for such
application we do the following:

a) Define number of similar OD matrices representing
normal day-to-day travel demand variability. The aver-
age of these OD represents the typical OD and is the
ground truth for the study. The details are presented in
Section IV.B.1.

b) Simulate the traffic with an OD and export the loop
and Bluetooth data. Repeat this process over all the
defined ODs. This provides database for individual day
loop counts and Bluetooth-based sub-path flows (refer
Section IV.B.3.

1) Defining Similar OD Matrices: For the study network,
we develop a database of OD matrices that are structurally sim-
ilar. Here, we define a typical OD matrix x∗ (one-hour demand
equal to 6736 trips) and generate additional four similar OD
matrices by randomly perturbing x∗ with a standard deviation
of 5%. The OD matrices are denoted by x∗

i where x∗
1 = x∗

and x∗
i = rand (x∗, 5%) ∀2 ≤ i ≤ 5 such that x∗

w,i >0.
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Fig. 5. Method to generate synthetic data ( ỹ and s̃).

2) Traffic Simulation: For the current analysis, an hour
(7:30 AM- 8:30 AM) of simulation is performed using Aimsun
micro- which is a stochastic simulation at the microscopic
level. The assignment model considered is stochastic route
choice. The demand for each simulation is defined as per
Section IV.B.1 resulting in five different scenarios for a typical
OD. For each scenario five replications are simulated. Each
replication has its own random seed, resulting in a simulation
with different random selection of the stochastic parameters.

3) Synthetic Traffic Database (Loops and BMS): The traffic
database consists of loops and Bluetooth records from a
total of 25 simulation runs (5 similar demand patterns and
5 replications for each demand). Refer Fig. 5 that explains the
process of generating s̃ and ỹ.

The network has 24 loop detectors (see Fig. 4). Total vehicle
counts at each detector location during each simulation run
is obtained. Finally, traffic count at each detector location
is defined by first considering average of the counts at the
location from 25 simulations.

The network has 20 BMSs (see Fig. 4) that detects Blue-
tooth equipped vehicles. Interested readers can refer to the
traffic and communication simulation model for simulating
BMS dataset using Aimsun [41]. In this study, the sub-paths
are pre-selected before conducting the analysis. The number of
common sub-paths in all 25 simulation runs is identified to be
|B| = 113. For the analysis we have considered four different
cases with Bluetooth penetration rates (see Section IV.B.4.
Bluetooth sub-path trajectories are estimated independently for
each case.

The process of generating ỹ and s̃ illustrated in Fig. 5 is
briefly explained as follows:

• First, initiate ỹi,r and s̃i,r of dimensions |A|×1 = 24×1
and |B| x1 = 113×1, respectively for i th OD matrix (x∗

i )
and r th replication with zero flow values.

• Second, simulated traffic counts from |A| = 24 loops are
denoted by ỹi,r. The database of vehicle trajectories are
stored as a complete sequence of BMS in Hi,r . The first

TABLE I

STRUCTURAL SKEWNESS COMPARISON

and last BMSs of each complete trajectory sequence are
directly linked to the actual origin and destination zones
of the simulated trip.

• Third, convert Hi,r to sub-trajectories (Li,r ) by
de-selecting a few scanner IDs from the beginning and
ending of the complete trajectory sequence (this is done
because the actual Bluetooth trajectories do not always
represent true trip ends) and due to the deselection
process |Li,r | is less than |Hi,r |. For instance, |H1,1| =
5, 273 and |L1,1| = 3, 875 in our study.

• Fourth, identify η percent of sub-trajectories (L̃i,r ) from
the set Li,r . For instance, |L̃1,1| = 97 for η% = 2.5%
of 3,875 of total sub-trajectories.

• Fifth, count the number of sub-trajectories (from L̃i,r )
passing through each sub-path in B and add it to s̃i,r.
Note that η% random selection in the previous step might
not account all sub-paths, and in such cases, some of
the sub-paths can contain zero flow values in s̃i,r. For
instance, |L̃1,1| = 97 sub-trajectories (for η% = 2.5%)
resulted in only 43 out of |B| = 113 sub-paths, which
means the flows for the rest are zeros. Similarly, 61 for
5%, 76 for 7.5%, and 82 for 10%, respectively.

• Repeat steps from first to fifth for all 25 simulations
(i.e. i = 1 to 5 and r = 1 to 5). The average traffic

counts observations are obtained as ỹ =
∑5

i=1
∑5

r=1 ỹi,r
25 and

the final consolidated vector of sub-path flows is obtained
as s̃ = ∑5

i=1
∑5

r=1 s̃i,r.

The structural skewness of consolidated sub-path flows (s̃)
in comparison with average skewness for different η% is
shown in Table I.

It can be seen in Table I that ρ (s̃,s∗) (i.e. 3rd column)
is better than the average skewness (i.e. 2nd column). This
implies that consolidation of sample sub-path flows (s̃i,r) over
several similar days improves the quality of s̃.

4) Experiment Cases: To evaluate the impact of the Blue-
tooth penetration rate we consider different scenarios as
follows:

a) Traditional case: Z (x) is expressed only in terms of traf-
fic counts deviations (Equation 1). No Bluetooth-based
sub-path trajectories are considered.

b) Case-1: Here, s̃ is generated using η% = 2.5% and Z (x)
is expressed using Equation 3.

c) Case -2: Here, s̃ is generated using η% = 5% and Z (x)
is expressed using Equation 3.

d) Case -3: Here, s̃ is generated using η% = 7.5% and
Z (x) is expressed using Equation 3.
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TABLE II

COMPARISON OF x̃c WITH x∗

e) Case -4: Here, s̃ is generated using η% = 10% and Z (x)
is expressed using Equation 3.

C. Performance Evaluation

To check the efficiency of the proposed methodology,
the final estimated OD (x), individually for different cases,
is compared with ground truth OD (x∗) using following two
indicators:

a) RMSN (x,x∗) (Equation 10): It is a standard measure to
compare estimated OD flows (xw) with that of ground
truth (x∗

w). In the Equation 10, |W | is the size of the OD
vector.

b) ρ(x,x∗) (Equation 11): This measure is more
robust [22], 47] and is used to compare only the
structural deviation between the estimated OD matrix
(x) and ground truth OD vector (x∗). Notations of
terms used in Equation 11 are explained in Section II.

RMSN
(
x,x∗)=

√
|W | ∑w∈W

(
xw−x∗

w

)2

∑
w∈W x∗

w

(10)

ρx,x∗ = (x−μx)
T (x∗−μx∗)√

(x−μx)
T (x−μx)

√
(x∗−μx∗)T (x∗−μx∗)

(11)

D. A Priori OD Matrix for Optimization

To test the proposed methodology with respect to the con-
sideration of a priori OD matrix for optimization, we perform
the analysis independently on three different a priori OD
matrices (x̃1,x̃2, and x̃3 in the descending order of OD quality).
Table II presents the quality of a priori OD matrix (x̃c) with
respect to the ground-truth (x∗).

E. Results

In this section, we discuss the quality of the OD estimates
(x) resulted from different cases and consideration of different
a priori OD matrices.

1) Quality Assessment of OD Estimates Using RMSN: The
Fig. 6 summarizes the results using RMSN as the performance
indicator. Here, different link graph corresponds to different a
priori-OD matrix. The x-axis represents different cases.

The results indicate a gradual improvement in the quality
of x as measured through RMSN. For instance, the set of

Fig. 6. RMSN (x̃c, x∗) Vs RMS N
(
x, x∗)

for all experiments.

Fig. 7. % Improvements in RMS N
(
x, x∗)

with respect to RMSN (x̃c, x∗).

Fig. 8. ρ (x̃c, x∗) Vs ρ
(
x, x∗)

for all experiments.

experiments initiated with x̃1 improved from RMSN (x̃1,x∗) =
0.47 to RMSN (x,x∗) = 0.38 (for η%=10%). Similarly,
the results for the experiments initiated with x̃2, and x̃3 have
also demonstrated significant improvements.

The percent improvements in RMSN (x,x∗) are illustrated
in Fig. 7. The percent improvement is calculated with respect
to x̃c, and we can observe greater improvements in all
Bluetooth-based cases as against the traditional case. For
example, at η%=2.5%, there is 16.71% improvement (from
RMSN (x̃1,x∗) = 0.47 to RMSN (x,x∗) = 0.39. Within the
Bluetooth based cases, there is only a slight improvement in
the RMSN.

2) Quality Assessment of OD Estimates Using ρ: The
ρ (x,x∗) results as shown in Fig. 8 demonstrate that there is
structural improvement in the OD estimates as η% increases
from 2.5% to 10%. Fig. 8 also highlights that the traditional
traffic counts-based approach could not bring any significant
structural improvements in the OD estimates unless additional
information from Bluetooth sub-path flows is introduced.
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Fig. 9. % Improvements in ρ
(
x, x∗)

with respect to ρ(x̃c, x∗).

TABLE III

STATISTICAL DIFFERENCE BETWEEN TRADITIONAL

AND REST OF THE CASES

The percentage structural improvement in ρ (x,x∗) for the
traditional method is negative for x̃1 based experiment (Fig. 9).
This implies a structural degradation. The simulation runs
based on x̃2 has also showed only little improvement while
there is some improvement for x̃3. This shows that traffic
counts-based OD estimation does not necessarily improve the
structure of OD because the deviations of traffic counts used in
the objective function do not capture any sort of OD structural
information.

Another factor that could possibly control the results may be
attributed to the selection of gradient descent algorithm. The
current study focuses on the development of a new upper-level
formulation, improving upon the solution algorithm is beyond
the scope of this paper. Nonetheless, it can be seen that rates
of improvement for sub-path flows-based cases are better than
that of traditional method because they provide additional
information related to trip distribution. While, the percent
improvement in ρ (x,x∗) is higher for sub-path flows-based
cases (i.e. case-1 to case-4), there is no significant difference
in the improvements among them. This, is because the con-
solidated (for 25 simulations) penetration rates of η% =2.5%,
5%, 7.5% and 10% are2.5%∗25 = 62.5%, 5%∗25 = 125%,
7.5%∗187.5, and 10%∗2.5=250%, respectively, and are rather
sufficient to bring the necessary improvement in the OD
quality.

3) Statistical Assessment of the Results: The difference
between the results obtained from traditional method and those
from the cases with Bluetooth penetration rates are statistically
compared at α = 10% level of significance using paired t-test
and are shown in the Table III. Although, the improvements
in the absolute values of both RMSN (Fig. 6 and Fig. 7)
and ρ (Fig. 8 and Fig. 9) seem to be marginal, Table II
demonstrates that that the absolute t-values are greater than the
critical value (i.e. +/-2.353 for 3 degrees of freedom) at 90%

confidence level in all cases for RMSN and in all but case-1
for ρ. Except for ρ comparison in case-1, the results from
traditional and proposed method are statistically different.

V. DISCUSSION

The goodness of fit measurements namely, RMSN (x,x∗)
and ρ (x,x∗) showed significant improvement with respect
to both a priori OD and traditional method using Bluetooth
sub-path flows. We can see that the results for η% > 2.5%
(i.e. case-2 to case-4) are slightly better than η%=2.5%
(case-1).

The traditional method did not show any significant
structural enhancements (Fig. 8 and Fig. 9) although the
RMSN (x,x∗) measure is improved (refer to x̃1 and x̃2 cases
in Fig. 6 and Fig. 7). In fact, RMSN (x1,x∗) is improved but
ρ (x1,x∗) degraded due to the problem of under-determinacy
for the traditional case. This showed that preserving the
OD structure using additional path-based information from
Bluetooth short trips (which we referred as sub-path flows in
this paper) helped to direct OD convergence towards a better
solution estimate instead of ‘getting stuck’ in the local optima.

There is hardly any difference in the computational cost
required to evaluate traditional and proposed objective func-
tions. For x̃1 scenario, the computational time (tested on a
Dell computer with Intel(R) Core(TM) i5-3230 CPU, 4GB
RAM, 2.60GHz) required for the traditional method is nearly
3.86 minutes and for the sub-path flows-based experiments it
is around 3.78 minutes (average of all 4 cases).

The experiments are tested in a controlled environment
due to the unavailability of the ground truth (i.e. true OD).
Nevertheless, the study demonstrated the performance of
proposed methodology for different prior OD matrices and
lower sample of random Bluetooth observations. The Brisbane
City Council (BCC) and the Department of Transport Main
Roads (TMR) have been recording the Bluetooth observations
on a continuous basis, and it is possible to have the database
of traffic observations from several days representing similar
travel patterns [48]. Thus, the proposed methodology is ready
for practical implementation on real world networks with
trajectories and loop counts database.

VI. CONCLUSION

One of the major limitations of traffic counts-based OD esti-
mation is the problem of under-determinacy, and due to which
the quality of OD estimates cannot always be guaranteed.
With the advancements in technology, many emerging data
sources such as Bluetooth provides additional travel related
information including vehicle trajectories. However, they are
only partial observations of complete trips with random and
unknown penetration rates. Studies in the past have developed
objective functions based on partial path (referred as sub-path
in this study) information but with an assumption that their
penetration rate is known.

To this end, the study contributes in two ways: first,
it proposes the idea of “structural comparison of sub-path
flows” to relax the requirement of “known” penetration rate
of vehicles’ trajectories; second, it proposes an innovative
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way to incorporate the sub-path flow information in the upper
level objective function of the traditional bi-level optimization
problem of OD estimation. Here, the structural difference
between the observed and estimated sub-path flows is mod-
elled as the correlation coefficient and integrated with the
traditional objective to minimize the deviation between the
observed and estimated link flows. The proposed objective
function is the product of two functions, one measuring the
fit in the link flows, the other one measuring correlation
in sub-path flows. In this formulation when the structure of
the observed and estimated sub-path flows has: a) perfect
positive correlation (= +1), then the formulation reduces to
the traditional minimization of the link flows; and b) imperfect
negative correlation (=−1), then the formulation amplifies the
deviations of the link flows.

The proposed sub-paths flows-based approach maintains
structural consistency in the OD matrix estimates and is
better than traditional traffic counts-based technique. This
is because the structure of Bluetooth sub-path flows, which
is independent of the penetration rates, provides an addi-
tional higher-dimensional information about trip distribution
as against point-based observations of link flows. The pro-
posed methodology, tested through several experiments, has
demonstrated its practical relevance for situations when the
penetration rate of Bluetooth trajectories is low.

While the present study demonstrated results better than
the traditional approach, the study can be extended in the
following research directions. First, this study is a proof of
concept where we focus on the formulation of the upper level
objective function and have applied traditional gradient descent
approach for optimization. This provides conservative results.
Also, the step size is crucial in gradient descent algorithm
and needs to be adjusted for different OD flow values. The
consideration of advanced stochastic algorithms such as sto-
chastic perturbation and simultaneous approximation (SPSA)
and Genetic Algorithms should further improve the results.
Second, more experiments shall be conducted in future to
investigate right selection of sub-paths, the percentage of
OD demand they are able to intercept (similar to [49], [50]
where the results showed improvement for both intercepted
and non-intercepted OD), and the sensitivity of the selected
sub-path flows on OD estimation. Third, the study uses average
traffic counts for D days. Averaging counts may be acceptable
for demand realizations that are relatively close to each other.
However, in the real world, since the underlying demand is
unknown, there is little chance to verify this assumption. This
is particularly so if major incidents were active during the
data collection. As a part of the future study, we would like
to test our approach for such situations. Finally, the current
study is based on a synthetic network, but the real network is
challenged by errors, unobserved stochasticity, unknown true
demand etc. Thus, we would like to test our methodology on
a real case study network for the future study as well.

Although, the study demonstrated using Bluetooth sub-
path flows, the proposed approach is generic in nature and
the formulation holds good for path (partial/complete) flows
observed from any other emerging data sources such as WiFi,
GPS, mobile phone etc.
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